A024826 Least m such that if r and s in {1/1, 1/3, 1/6,..., 1/C(n+1,2)} satisfy r < s, then r < k/m < s for some integer k.
2, 4, 7, 13, 31, 46, 64, 85, 145, 181, 226, 331, 397, 469, 638, 736, 841, 1089, 1225, 1378, 1711, 1901, 2311, 2542, 2784, 3313, 3601, 3901, 4564, 4915, 5685, 6091, 6526, 7441, 7937, 8977, 9538, 10116, 11341, 11989, 13358, 14080, 14821, 16401, 17221, 18964, 19867
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..100
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[1/Binomial[h + 1, 2], {h, 1, 50}]] leastSeparator[t]
Comments