A024827 Least m such that if r and s in {1/1, 1/4, 1/9,..., 1/n^2} satisfy r < s, then r < k/m < s for some integer k.
2, 5, 10, 19, 33, 76, 109, 148, 197, 325, 406, 501, 727, 865, 1015, 1373, 1576, 1801, 2313, 2602, 3250, 3611, 4001, 4852, 5325, 5820, 6913, 7501, 8789, 9478, 10207, 11775, 12616, 14416, 15377, 16385, 18514, 19653, 22051, 23329, 24643, 27437, 28900, 32001, 33621
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..100
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length [seq]}]]; t = Flatten[Table[1/h^2, {h, 1, 60}]] leastSeparator[t]
Comments