A024828 a(n) = least m such that if r and s in {h/(1 + h^2): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.
7, 9, 11, 14, 18, 27, 32, 44, 58, 66, 83, 102, 112, 134, 158, 184, 198, 227, 258, 291, 308, 344, 382, 422, 464, 486, 531, 578, 627, 678, 704, 758, 814, 872, 932, 994, 1026, 1091, 1158, 1227, 1298, 1371, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1938, 2027, 2118, 2211, 2306
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..200
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[h/(1 + h^2), {h, 1, 60}]] leastSeparator[t] (* Peter J. C. Moses, Aug 01 2012 *)
Comments