cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024830 a(n) = least m such that if r and s in {F(2*h)/F(2*h+1): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers).

This page as a plain text file.
%I A024830 #22 Jun 27 2022 11:08:29
%S A024830 7,18,73,424,2741,18389,124799,851937,5831634,39952039,273777171,
%T A024830 1876334786,12860231668
%N A024830 a(n) = least m such that if r and s in {F(2*h)/F(2*h+1): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers).
%C A024830 See A001000 for a guide to related sequences. - _Clark Kimberling_, Aug 07 2012
%t A024830 (* For a guide to related sequences, see A001000. *)
%t A024830 leastSeparator[seq_] := Module[{n = 1},
%t A024830 Table[While[Or @@ (Ceiling[n #1[[1]]] <
%t A024830 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
%t A024830 Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
%t A024830 t = Table[N[Fibonacci[2 h]/Fibonacci[2 h + 1]], {h, 1, 10}];
%t A024830 t1 = leastSeparator[t]
%t A024830 (* _Peter J. C. Moses_, Aug 01 2012 *)
%Y A024830 Cf. A001000, A024829.
%K A024830 nonn,more
%O A024830 2,1
%A A024830 _Clark Kimberling_
%E A024830 Extended by _Clark Kimberling_, Aug 07 2012
%E A024830 a(11)-a(14) from _Sean A. Irvine_, Jul 25 2019