A024832 Least m such that if r and s in {Pi/2 - atn(h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.
2, 3, 7, 10, 17, 21, 31, 43, 50, 65, 82, 91, 111, 133, 157, 170, 197, 226, 257, 273, 307, 343, 381, 421, 442, 485, 530, 577, 626, 651, 703, 757, 813, 871, 931, 962, 1025, 1090, 1157, 1226, 1297, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1850, 1937, 2026, 2117, 2210, 2305
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..200
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[Pi/2 - ArcTan[h], {h, 1, 60}]]; leastSeparator[t] (* Peter J. C. Moses, Aug 01 2012 *)
Comments