cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024834 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.

This page as a plain text file.
%I A024834 #13 Jun 27 2022 11:08:35
%S A024834 4,13,26,43,64,100,133,183,226,290,343,421,484,576,676,757,871,993,
%T A024834 1090,1226,1370,1483,1641,1807,1936,2116,2304,2500,2653,2863,3081,
%U A024834 3307,3482,3722,3970,4226,4423,4693,4971,5257,5476,5776,6084,6400,6724,6973,7311,7657,8011
%N A024834 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
%C A024834 For a guide to related sequences, see A001000. - _Clark Kimberling_, Aug 12 2012
%H A024834 Clark Kimberling, <a href="/A024834/b024834.txt">Table of n, a(n) for n = 2..100</a>
%t A024834 leastSeparatorS[seq_, s_] := Module[{n = 1},
%t A024834 Table[While[Or @@ (Ceiling[n #1[[1]]] <
%t A024834 s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
%t A024834 Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
%t A024834 t = Map[leastSeparatorS[1/(2*Range[50] - 1), #] &, Range[5]];
%t A024834 t[[2]] (* A024834 *)
%t A024834 (* _Peter J. C. Moses_, Aug 06 2012 *)
%Y A024834 Cf. A001000, A024835.
%K A024834 nonn
%O A024834 2,1
%A A024834 _Clark Kimberling_