cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024836 a(n) = least m such that if r and s in {1/1, 1/4, 1/7, ..., 1/(3n-2)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.

This page as a plain text file.
%I A024836 #13 Jun 27 2022 18:53:03
%S A024836 3,13,29,51,92,131,193,248,331,401,505,590,715,852,963,1121,1291,1427,
%T A024836 1618,1821,1981,2205,2441,2625,2882,3151,3361,3651,3953,4267,4511,
%U A024836 4846,5193,5552,5829,6209,6601,7005,7315,7740,8177,8626,9087,9441,9923,10417,10923,11441
%N A024836 a(n) = least m such that if r and s in {1/1, 1/4, 1/7, ..., 1/(3n-2)} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
%C A024836 For a guide to related sequences, see A001000. - _Clark Kimberling_, Aug 12 2012
%H A024836 Clark Kimberling, <a href="/A024836/b024836.txt">Table of n, a(n) for n = 2..100</a>
%t A024836 leastSeparatorS[seq_, s_] := Module[{n = 1},
%t A024836 Table[While[Or @@ (Ceiling[n #1[[1]]] <
%t A024836 s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
%t A024836 Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
%t A024836 t = Map[leastSeparatorS[1/(3*Range[50]-2), #] &, Range[5]];
%t A024836 t[[2]] (* A024836 *)
%t A024836 (* _Peter J. C. Moses_, Aug 06 2012 *)
%Y A024836 Cf. A001000, A024837, A024838.
%K A024836 nonn
%O A024836 2,1
%A A024836 _Clark Kimberling_