A024838 Least m such that if r and s in {1/3, 1/6, 1/9, ..., 1/3n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
10, 25, 46, 73, 121, 166, 235, 295, 385, 460, 571, 661, 793, 937, 1054, 1219, 1396, 1537, 1735, 1945, 2110, 2341, 2584, 2773, 3037, 3313, 3601, 3826, 4135, 4456, 4789, 5047, 5401, 5767, 6145, 6436, 6835, 7246, 7669, 7993, 8437, 8893, 9361, 9841, 10210, 10711, 11224
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..100
Programs
-
Mathematica
leastSeparatorS[seq_, s_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Map[leastSeparatorS[1/(3*Range[50]), #] &, Range[5]]; t[[2]] (* A024838 *) (* Peter J. C. Moses, Aug 06 2012 *)
Comments