A024839 Least m such that if r and s in {1/4, 1/8, 1/12, ..., 1/4n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
13, 33, 61, 97, 161, 221, 313, 393, 513, 613, 761, 881, 1057, 1249, 1405, 1625, 1861, 2049, 2313, 2593, 2813, 3121, 3445, 3697, 4049, 4417, 4801, 5101, 5513, 5941, 6385, 6729, 7201, 7689, 8193, 8581, 9113, 9661, 10225, 10657, 11249, 11857
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..100
Programs
-
Mathematica
leastSeparatorS[seq_, s_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Map[leastSeparatorS[1/(4*Range[50]), #] &, Range[5]]; t[[2]] (* A024839 *) (* Peter J. C. Moses, Aug 06 2012 *)
Extensions
Corrected by Clark Kimberling, Aug 12 2012
Comments