cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024841 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.

This page as a plain text file.
%I A024841 #13 Jun 27 2022 18:52:26
%S A024841 5,19,41,71,109,155,222,287,376,460,571,673,806,926,1081,1219,1396,
%T A024841 1552,1751,1926,2147,2380,2584,2839,3106,3338,3627,3928,4188,4511,
%U A024841 4846,5134,5491,5860,6176,6567,6970,7385,7740,8177,8626,9087,9481,9964,10459,10966,11398
%N A024841 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.
%C A024841 For a guide to related sequences, see A001000. - _Clark Kimberling_, Aug 12 2012
%H A024841 Clark Kimberling, <a href="/A024841/b024841.txt">Table of n, a(n) for n = 2..100</a>
%t A024841 leastSeparatorS[seq_, s_] := Module[{n = 1},
%t A024841 Table[While[Or @@ (Ceiling[n #1[[1]]] <
%t A024841 s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
%t A024841 Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
%t A024841 t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
%t A024841 t[[3]] (* A024841 *)
%t A024841 (* _Peter J. C. Moses_, Aug 06 2012 *)
%Y A024841 Cf. A001000, A024842.
%K A024841 nonn
%O A024841 2,1
%A A024841 _Clark Kimberling_