cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024842 a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/2n} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.

This page as a plain text file.
%I A024842 #12 Jun 27 2022 21:18:02
%S A024842 11,29,55,89,131,181,253,323,417,505,621,727,865,989,1149,1291,1473,
%T A024842 1633,1837,2053,2243,2481,2731,2949,3221,3505,3751,4057,4375,4649,
%U A024842 4989,5341,5643,6017,6403,6733,7141,7561,7993,8363,8817,9283,9761,10169,10669,11181,11705
%N A024842 a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/2n} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.
%C A024842 For a guide to related sequences, see A001000. - _Clark Kimberling_, Aug 12 2012
%H A024842 Clark Kimberling, <a href="/A024842/b024842.txt">Table of n, a(n) for n = 2..100</a>
%t A024842 leastSeparatorS[seq_, s_] := Module[{n = 1},
%t A024842 Table[While[Or @@ (Ceiling[n #1[[1]]] <
%t A024842 s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
%t A024842 Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
%t A024842 t = Map[leastSeparatorS[1/(2*Range[50]), #] &, Range[5]];
%t A024842 t[[3]] (* A024842 *)
%t A024842 (* _Peter J. C. Moses_, Aug 06 2012 *)
%Y A024842 Cf. A001000, A024841.
%K A024842 nonn
%O A024842 2,1
%A A024842 _Clark Kimberling_