A024843 a(n) = least m such that if r and s in {1/1, 1/2, 1/3, ..., 1/n} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.
9, 23, 43, 69, 101, 139, 183, 233, 289, 361, 431, 518, 601, 703, 799, 916, 1025, 1157, 1279, 1426, 1561, 1723, 1871, 2048, 2209, 2401, 2601, 2783, 2998, 3221, 3423, 3661, 3907, 4129, 4390, 4659, 4901, 5185, 5477, 5739, 6046, 6361, 6643, 6973, 7311, 7613, 7966, 8327, 8649
Offset: 2
Keywords
Examples
Using the terminology introduced at A001000, the 4th separator of the set {1/3, 1/2, 1} is a(3) = 23, since 1/3 < 8/23 < 11/23 < 1/2 < 12/23 < 15/23 < 1 and 23 is the least m for which 1/3, 1/2, 1 are thus separated using numbers k/m. - _Clark Kimberling_, Aug 08 2012
Links
- Clark Kimberling, Table of n, a(n) for n = 2..100
Crossrefs
Cf. A001000.
Programs
-
Mathematica
leastSeparatorS[seq_, s_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Map[leastSeparatorS[1/Range[50], #] &, Range[5]]; TableForm[t] t[[4]] (* Peter J. C. Moses, Aug 08 2012 *)
Comments