cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024844 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.

Original entry on oeis.org

7, 28, 61, 106, 163, 232, 313, 406, 511, 647, 780, 946, 1105, 1301, 1486, 1712, 1923, 2179, 2416, 2702, 2965, 3281, 3570, 3916, 4231, 4607, 4999, 5356, 5778, 6216, 6613, 7081, 7565, 8002, 8516, 9046, 9523, 10083, 10659, 11176, 11782, 12404, 12961, 13613, 14281, 14878
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
From Jianing Song, Aug 31 2022: (Start)
Smallest m such that ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = 5 for 1 <= j <= n-1.
Obviously we have a(n) > 3/(1/(2*n-3) - 1/(2*n-1)) => a(n) >= 6*n^2 - 12*n + 5. On the other hand, a(n) <= 4/(1/(2*n-3) - 1/(2*n-1)) + 1 = 2*(2*n-1)*(2*n-3) + 1: if m >= 2*(2*n-1)*(2*n-3) + 1, then m/(2*j-1) - m/(2*j+1) > 4 => ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = ceiling(m/(2*j-1)-floor(m/(2*j+1))) >= ceiling(m/(2*j-1) - m/(2*j+1)) >= 5 for 1 <= j <= n-1. (End)

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
    t[[4]] (* A024844 *)
    (* Peter J. C. Moses, Aug 06 2012 *)
  • PARI
    a(n) = for(m=6*n^2-12*n+5, 8*n^2-16*n+7, forstep(j=n-1, 1, -1, if(-((-m)\(2*j-1)) - m\(2*j+1) < 5, break(), if(j==1, return(m))))) \\ Jianing Song, Aug 31 2022