A024844 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.
7, 28, 61, 106, 163, 232, 313, 406, 511, 647, 780, 946, 1105, 1301, 1486, 1712, 1923, 2179, 2416, 2702, 2965, 3281, 3570, 3916, 4231, 4607, 4999, 5356, 5778, 6216, 6613, 7081, 7565, 8002, 8516, 9046, 9523, 10083, 10659, 11176, 11782, 12404, 12961, 13613, 14281, 14878
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..100
Programs
-
Mathematica
leastSeparatorS[seq_, s_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]]; t[[4]] (* A024844 *) (* Peter J. C. Moses, Aug 06 2012 *)
-
PARI
a(n) = for(m=6*n^2-12*n+5, 8*n^2-16*n+7, forstep(j=n-1, 1, -1, if(-((-m)\(2*j-1)) - m\(2*j+1) < 5, break(), if(j==1, return(m))))) \\ Jianing Song, Aug 31 2022
Comments