cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024848 a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/2n} satisfy r < s, then r < k/m < (k+4)/m < s for some integer k.

Original entry on oeis.org

19, 53, 103, 169, 251, 349, 463, 593, 739, 901, 1101, 1299, 1537, 1769, 2045, 2311, 2625, 2925, 3277, 3611, 4001, 4369, 4797, 5199, 5665, 6101, 6605, 7075, 7617, 8121, 8701, 9301, 9859, 10497, 11155, 11765, 12461, 13177, 13839, 14593, 15367, 16081, 16893, 17725
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]), #] &, Range[5]];
    TableForm[t]
    t[[5]]  (* A024848 *)
    (* Peter J. C. Moses, Aug 06 2012 *)