A024849 a(n) = least m such that if r and s in {|F(h+1)-tau*F(h)|: h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers) and tau = (1+sqrt(5))/2 (golden ratio).
2, 4, 6, 9, 14, 23, 36, 59, 94, 153, 246, 399, 644, 1043, 1686, 2729, 4414, 7143, 11556, 18699
Offset: 2
Programs
-
Mathematica
f[n_] := Fibonacci[n]; r = GoldenRatio; leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Flatten[Table[Abs[f[h + 1] - r*f[h]], {h, 1, 21}]]; leastSeparator[t] (* Peter J. C. Moses, Aug 01 2012 *)
Comments