A025003 a(1) = 2; a(n+1) = a(n)-th nonprime, where nonprimes begin at 1.
2, 4, 8, 14, 22, 33, 48, 66, 90, 120, 156, 202, 256, 322, 400, 494, 604, 734, 888, 1067, 1272, 1512, 1790, 2107, 2472, 2890, 3364, 3903, 4515, 5207, 5990, 6875, 7868, 8984, 10238, 11637, 13207, 14959, 16909, 19075, 21483, 24173, 27149, 30436, 34080, 38103
Offset: 1
Keywords
Examples
From _Ya-Ping Lu_, Sep 07 2020: (Start) a(1) = 2 because f(2) = 2 - pi(2) = 1 and m(2) = 1; For the integer 3, since f(3) = 1. m(3) = 1, which is not bigger than m(1) or m(2). So, 3 is not a term in the sequence; a(2) = 4 because f^2(4) = f(2) = 1 and m(4) = 2; a(3) = 8 because f^3(8) = f^2(4) = 1 and m(8) = 3. (End)
Programs
-
Maple
N:= 50: # to get a(0)..a(N) V:= Array(0..N): V[0]:= 1: V[1]:= 2: m:= 2: p:= 3: g:= 1: n:= 1: do if g+p-m-1 >= V[n] then m:= V[n]+m-g; n:= n+1; V[n]:= m; if n = N then break fi; g:= V[n-1]; else g:= g+p-m; m:= p+1; p:= nextprime(m); fi; od; convert(V, list); # Robert Israel, Sep 08 2020
-
Python
from sympy import prime, primepi n_last = 0 pi_last = 0 ct_max = -1 for n in range(1, 100001): ct = 0 pi = pi_last + primepi(n) - primepi(n_last) n_c = n pi_c = pi while n_c > 1: nc -= pi_c ct += 1 pi_c -= primepi(n_c + pi_c) - primepi(n_c) if ct > ct_max: print(n) ct_max = ct n_last = n pi_last = pi # Ya-Ping Lu, Sep 07 2020
Formula
a(n) = min(k: f^n(k) = 1), where f = A062298 and n-fold iteration of f is denoted by f^n. - Ya-Ping Lu, Sep 07 2020
Comments