cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025013 Central octonomial coefficients: largest coefficient of (1+x+...+x^7)^n.

This page as a plain text file.
%I A025013 #29 Mar 19 2025 08:05:43
%S A025013 1,1,8,48,344,2460,18152,134512,1012664,7635987,58199208,443658688,
%T A025013 3409213016,26184550496,202384723528,1562970918720,12133130451576,
%U A025013 94094281551304,732910480638272,5702603044247504,44538031693977544
%N A025013 Central octonomial coefficients: largest coefficient of (1+x+...+x^7)^n.
%C A025013 Generally, largest coefficient of (1+x+...+x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)). - _Vaclav Kotesovec_, Aug 09 2013
%H A025013 Vaclav Kotesovec, <a href="/A025013/b025013.txt">Table of n, a(n) for n = 0..500</a> (first 200 terms from T. D. Noe)
%H A025013 Vaclav Kotesovec, <a href="/A025013/a025013.txt">Recurrence</a>.
%H A025013 <a href="/index/Ce#cfn">Index entries for sequences of k-nomial coefficients</a>
%F A025013 a(n) ~ 8^n * sqrt(2/(21*Pi*n)). - _Vaclav Kotesovec_, Aug 09 2013
%F A025013 a(n) = Sum_{k = 0..floor(n/2)} (-1)^k * binomial(n, k)*binomial(n+floor(7*n/2)-8*k-1, n-1). - _Peter Bala_, Oct 15 2024
%p A025013 seq(add((-1)^k * binomial(n, k)*binomial(n+floor(7*n/2)-8*k-1, n-1), k = 0..floor(n/2) ), n = 0..20); # _Peter Bala_, Oct 15 2024
%t A025013 Flatten[{1,Table[Coefficient[Expand[Sum[x^j,{j,0,7}]^n],x^Floor[7*n/2]],{n,1,20}]}] (* _Vaclav Kotesovec_, Aug 09 2013 *)
%Y A025013 Row 8 of A077042.
%K A025013 easy,nonn
%O A025013 0,3
%A A025013 _David W. Wilson_