This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025038 #42 Aug 28 2025 10:28:06 %S A025038 1,1,462,2858856,96197645544,11423951396577720,3708580189773818399040, %T A025038 2779202577056119960603777920,4263127221846887596248598498826880, %U A025038 12233832241625685631640659383106015132800,61247286460823449786646954166350590676638060800 %N A025038 Number of partitions of { 1, 2, ..., 6n } into sets of size 6. %H A025038 Andrew Howroyd, <a href="/A025038/b025038.txt">Table of n, a(n) for n = 0..50</a> %H A025038 Cyril Banderier, Philippe Marchal, and Michael Wallner, <a href="https://arxiv.org/abs/1805.09017">Rectangular Young tableaux with local decreases and the density method for uniform random generation</a> (short version), arXiv:1805.09017 [cs.DM], 2018. %H A025038 Robert Coquereaux and Jean-Bernard Zuber, <a href="https://arxiv.org/abs/2305.01100">Counting partitions by genus. II. A compendium of results</a>, arXiv:2305.01100 [math.CO], 2023. See p. 17. %F A025038 a(n) = (6n)!/(n!(6!)^n). - _Christian G. Bower_, Sep 15 1998 %F A025038 a(n) ~ 2^(2*n+1/2) * 3^(4*n+1/2) * (n/e)^(5*n) / 5^n. - _Amiram Eldar_, Aug 28 2025 %t A025038 Table[Pochhammer[n + 1, 5*n]/6!^n, {n, 0, 15}] (* _Paolo Xausa_, Aug 08 2024 *) %o A025038 (Sage) [rising_factorial(n+1,5*n)/720^n for n in (0..15)] # _Peter Luschny_, Jun 26 2012 %Y A025038 Column k=6 of A060540. %K A025038 nonn,changed %O A025038 0,3 %A A025038 _David W. Wilson_ %E A025038 a(0) and a(10) from _Andrew Howroyd_, Feb 26 2018