A025046 a(n) = the least odd prime p such that there are exactly n consecutive quadratic remainders modulo p.
3, 5, 19, 17, 67, 71, 131, 73, 277, 311, 827, 241, 1607, 2543, 3691, 1559, 6803, 5711, 14969, 1009, 43103, 10559, 52057, 2689, 90313, 162263, 127403, 18191, 209327, 31391, 607153, 8089, 1305511, 298483, 1694353, 33049, 3205777, 1523707
Offset: 2
Keywords
Examples
a(5)=17 because -2,-1,0,+1,+2 are quadratic remainders, squares of 7,4,0,1,11.
Crossrefs
Cf. A097159.
Extensions
Edited by Don Reble, May 31 2007
Comments