cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025047 Number of alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease.

This page as a plain text file.
%I A025047 #53 Mar 19 2024 08:31:48
%S A025047 1,1,1,3,4,7,12,19,29,48,75,118,186,293,460,725,1139,1789,2814,4422,
%T A025047 6949,10924,17168,26979,42404,66644,104737,164610,258707,406588,
%U A025047 639009,1004287,1578363,2480606,3898599,6127152,9629623,15134213,23785388,37381849,58750468
%N A025047 Number of alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease.
%C A025047 Original name: Wiggly sums: number of sums adding to n in which terms alternately increase and decrease or vice versa.
%H A025047 Alois P. Heinz, <a href="/A025047/b025047.txt">Table of n, a(n) for n = 0..3333</a>
%H A025047 Edward A. Bender and E. Rodney Canfield, <a href="https://doi.org/10.37236/417">Locally Restricted Compositions III. Adjacent-Part Periodic Inequalities</a>, Electronic Journal of Combinatorics 17 (2010), #R145.
%F A025047 a(n) = A025048(n) + A025049(n) - 1 = sum_k[A059881(n, k)] = sum_k[S(n, k) + T(n, k)] - 1 where if n>k>0 S(n, k) = sum_j[T(n - k, j)] over j>k and T(n, k) = sum_j[S(n - k, j)] over k>j (note reversal) and if n>0 S(n, n) = T(n, n) = 1; S(n, k) = A059882(n, k), T(n, k) = A059883(n, k). - _Henry Bottomley_, Feb 05 2001
%F A025047 a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725..., c = 0.82222360450823867604750473815253345888526601460811483897... . - _Vaclav Kotesovec_, Sep 12 2014
%F A025047 a(n) = A344604(n) + 1 - n mod 2. - _Gus Wiseman_, Jun 17 2021
%e A025047 From _Joerg Arndt_, Dec 28 2012: (Start)
%e A025047 There are a(7)=19 such compositions of 7:
%e A025047 [ 1] +  [ 1 2 1 2 1 ]
%e A025047 [ 2] +  [ 1 2 1 3 ]
%e A025047 [ 3] +  [ 1 3 1 2 ]
%e A025047 [ 4] +  [ 1 4 2 ]
%e A025047 [ 5] +  [ 1 5 1 ]
%e A025047 [ 6] +  [ 1 6 ]
%e A025047 [ 7] -  [ 2 1 3 1 ]
%e A025047 [ 8] -  [ 2 1 4 ]
%e A025047 [ 9] +  [ 2 3 2 ]
%e A025047 [10] +  [ 2 4 1 ]
%e A025047 [11] +  [ 2 5 ]
%e A025047 [12] -  [ 3 1 2 1 ]
%e A025047 [13] -  [ 3 1 3 ]
%e A025047 [14] +  [ 3 4 ]
%e A025047 [15] -  [ 4 1 2 ]
%e A025047 [16] -  [ 4 3 ]
%e A025047 [17] -  [ 5 2 ]
%e A025047 [18] -  [ 6 1 ]
%e A025047 [19] 0  [ 7 ]
%e A025047 For A025048(7)-1=10 of these the first two parts are increasing (marked by '+'),
%e A025047 and for A025049(7)-1=8 the first two parts are decreasing (marked by '-').
%e A025047 The composition into one part is counted by both A025048 and A025049.
%e A025047 (End)
%p A025047 b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
%p A025047       b(n-j, j, 1-t), j=`if`(t=1, 1..min(l-1, n), l+1..n)))
%p A025047     end:
%p A025047 a:= n-> 1+add(add(b(n-j, j, i), i=0..1), j=1..n-1):
%p A025047 seq(a(n), n=0..40);  # _Alois P. Heinz_, Jan 31 2024
%t A025047 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
%t A025047 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],wigQ]],{n,0,15}] (* _Gus Wiseman_, Jun 17 2021 *)
%o A025047 (PARI)
%o A025047 D(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k,if(k<j, if(f, if(k>1, M[j-k,k-1]), M[j-k,n]-M[j-k,k] ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
%o A025047 seq(n) = concat([1], D(n,0) + D(n,1) - vector(n,j,1)) \\ _Andrew Howroyd_, Jan 31 2024
%Y A025047 Dominated by A003242 (anti-run compositions), complement A261983.
%Y A025047 The ascending case is A025048.
%Y A025047 The descending case is A025049.
%Y A025047 The version allowing pairs (x,x) is A344604.
%Y A025047 These compositions are ranked by A345167, permutations A349051.
%Y A025047 The complement is counted by A345192, ranked by A345168.
%Y A025047 The version for patterns is A345194 (with twins: A344605).
%Y A025047 A001250 counts alternating permutations, complement A348615.
%Y A025047 A011782 counts compositions.
%Y A025047 A032020 counts strict compositions.
%Y A025047 A106356 counts compositions by number of maximal anti-runs.
%Y A025047 A114901 counts compositions where each part is adjacent to an equal part.
%Y A025047 A274174 counts compositions with equal parts contiguous.
%Y A025047 A325534 counts separable partitions, ranked by A335433.
%Y A025047 A325535 counts inseparable partitions, ranked by A335448.
%Y A025047 A345164 counts alternating permutations of prime indices.
%Y A025047 A345165 counts partitions w/o alternating permutation, ranked by A345171.
%Y A025047 A345170 counts partitions w/ alternating permutation, ranked by A345172.
%Y A025047 Cf. A000070, A008965, A238279, A333755, A344606, A344614, A344653, A344740, A345163, A345166, A345169.
%K A025047 nonn
%O A025047 0,4
%A A025047 _David W. Wilson_
%E A025047 Better name using a comment of _Franklin T. Adams-Watters_ by _Peter Luschny_, Oct 31 2021