This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025065 #72 Nov 16 2021 04:16:35 %S A025065 1,1,2,2,4,4,7,7,12,12,19,19,30,30,45,45,67,67,97,97,139,139,195,195, %T A025065 272,272,373,373,508,508,684,684,915,915,1212,1212,1597,1597,2087, %U A025065 2087,2714,2714,3506,3506,4508,4508,5763,5763,7338,7338,9296,9296,11732,11732,14742,14742,18460,18460,23025,23025,28629,28629 %N A025065 Number of palindromic partitions of n. %C A025065 That is, the number of partitions of n into parts which can be listed in palindromic order. %C A025065 Alternatively, number of partitions of n into parts from the set {1,2,4,6,8,10,12,...}. - _T. D. Noe_, Aug 05 2005 %C A025065 Also, partial sums of A035363. %C A025065 Also number of partitions of n with at most one part occurring an odd number of times. - _Reinhard Zumkeller_, Dec 18 2013 %C A025065 The first Mathematica program computes terms of A025065; the second computes the k palindromic partitions of user-chosen n. - _Clark Kimberling_, Jan 20 2014 %C A025065 a(n) is the number of partitions p of n+1 such that 2*max(p) > n+1. - _Clark Kimberling_, Apr 20 2014. %C A025065 From _Gus Wiseman_, Nov 28 2018: (Start) %C A025065 Also the number of integer partitions of n + 2 that are the vertex-degrees of some hypertree. For example, the a(6) = 7 partitions of 8 that are the vertex-degrees of some hypertree, together with a realizing hypertree are: %C A025065 (41111): {{1,2},{1,3},{1,4},{1,5}} %C A025065 (32111): {{1,2},{1,3},{1,4},{2,5}} %C A025065 (22211): {{1,2},{1,3},{2,4},{3,5}} %C A025065 (311111): {{1,2},{1,3},{1,4,5,6}} %C A025065 (221111): {{1,2},{1,3},{2,4,5,6}} %C A025065 (2111111): {{1,2},{1,3,4,5,6,7}} %C A025065 (11111111): {{1,2,3,4,5,6,7,8}} %C A025065 (End) %C A025065 Conjecture: a(n) is the length of maximal initial segment of A308355(n-1) that is identical to row n of A128628, for n >= 2. - _Clark Kimberling_, May 24 2019 %C A025065 From _Gus Wiseman_, May 21 2021: (Start) %C A025065 The Heinz numbers of palindromic partitions are given by A265640. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %C A025065 Also the number of integer partitions of n with a part greater than or equal to n/2. This is equivalent to Clark Kimberling's final comment above. The Heinz numbers of these partitions are given by A344414. For example, the a(1) = 1 through a(8) = 12 partitions are: %C A025065 (1) (2) (3) (4) (5) (6) (7) (8) %C A025065 (11) (21) (22) (32) (33) (43) (44) %C A025065 (31) (41) (42) (52) (53) %C A025065 (211) (311) (51) (61) (62) %C A025065 (321) (421) (71) %C A025065 (411) (511) (422) %C A025065 (3111) (4111) (431) %C A025065 (521) %C A025065 (611) %C A025065 (4211) %C A025065 (5111) %C A025065 (41111) %C A025065 Also the number of integer partitions of n with at least n/2 parts. The Heinz numbers of these partitions are given by A344296. For example, the a(1) = 1 through a(8) = 12 partitions are: %C A025065 (1) (2) (21) (22) (221) (222) (2221) (2222) %C A025065 (11) (111) (31) (311) (321) (3211) (3221) %C A025065 (211) (2111) (411) (4111) (3311) %C A025065 (1111) (11111) (2211) (22111) (4211) %C A025065 (3111) (31111) (5111) %C A025065 (21111) (211111) (22211) %C A025065 (111111) (1111111) (32111) %C A025065 (41111) %C A025065 (221111) %C A025065 (311111) %C A025065 (2111111) %C A025065 (11111111) %C A025065 (End) %H A025065 David A. Corneth, <a href="/A025065/b025065.txt">Table of n, a(n) for n = 0..10000</a> (first 101 terms from Reinhard Zumkeller that were corrected by _Georg Fischer_, Jan 20 2019) %F A025065 a(n) = A000070(A004526(n)). - _Reinhard Zumkeller_, Jan 23 2010 %F A025065 G.f.: 1/((1-q)*prod(n>=1, 1-q^(2*n))). [_Joerg Arndt_, Mar 11 2014] %F A025065 a(2*k+2) = a(2*k) + A000041(k + 1). - _David A. Corneth_, May 29 2021 %F A025065 a(n) ~ exp(Pi*sqrt(n/3)) / (2*Pi*sqrt(n)). - _Vaclav Kotesovec_, Nov 16 2021 %e A025065 The partitions for the first few values of n are as follows: %e A025065 n: partitions .......................... number %e A025065 1: 1 ................................... 1 %e A025065 2: 2 11 ................................ 2 %e A025065 3: 3 111 ............................... 2 %e A025065 4: 4 22 121 1111 ....................... 4 %e A025065 5: 5 131 212 11111 ..................... 4 %e A025065 6: 6 141 33 222 1221 11211 111111 ...... 7 %e A025065 7: 7 151 313 11311 232 21112 1111111 ... 7 %e A025065 From _Reinhard Zumkeller_, Jan 23 2010: (Start) %e A025065 Partitions into 1,2,4,6,... for the first values of n: %e A025065 1: 1 ....................................... 1 %e A025065 2: 2 11 .................................... 2 %e A025065 3: 21 111 .................................. 2 %e A025065 4: 4 22 211 1111 ........................... 4 %e A025065 5: 41 221 2111 11111 ....................... 4 %e A025065 6: 6 42 4211 222 2211 21111 111111.......... 7 %e A025065 7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End) %t A025065 Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* _Peter J. C. Moses_, Jan 20 2014 *) %t A025065 n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* _Peter J. C. Moses_, Jan 20 2014 *) %t A025065 CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* _Clark Kimberling_, Mar 14 2014 *) %o A025065 (Haskell) %o A025065 a025065 = p (1:[2,4..]) where %o A025065 p [] _ = 0 %o A025065 p _ 0 = 1 %o A025065 p ks'@(k:ks) m | m < k = 0 %o A025065 | otherwise = p ks' (m - k) + p ks m %o A025065 -- _Reinhard Zumkeller_, Aug 12 2011 %o A025065 (Haskell) %o A025065 import Data.List (group) %o A025065 a025065 = length . filter (<= 1) . %o A025065 map (sum . map ((`mod` 2) . length) . group) . ps 1 %o A025065 where ps x 0 = [[]] %o A025065 ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)] %o A025065 -- _Reinhard Zumkeller_, Dec 18 2013 %o A025065 (PARI) N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ _Joerg Arndt_, Mar 11 2014 %Y A025065 Cf. A172033, A004277. - Reinhard Zumkeller, Jan 23 2010 %Y A025065 Cf. A004526, A030019, A056503, A147878, A320921, A322136. %Y A025065 The bisections are both A000070. %Y A025065 The ordered version (palindromic compositions) is A016116. %Y A025065 The complement is counted by A233771 and A210249. %Y A025065 The case of palindromic prime signature is A242414. %Y A025065 Palindromic partitions are ranked by A265640, with complement A229153. %Y A025065 The case of palindromic plane trees is A319436. %Y A025065 The multiplicative version (palindromic factorizations) is A344417. %Y A025065 A000569 counts graphical partitions. %Y A025065 A027187 counts partitions of even length, ranked by A028260. %Y A025065 A035363 counts partitions into even parts, ranked by A066207. %Y A025065 A058696 counts partitions of even numbers, ranked by A300061. %Y A025065 A110618 counts partitions with length <= half sum, ranked by A344291. %Y A025065 Cf. A000041, A067538, A143773, A209816, A338914, A338915, A340387, A344296, A344414, A344415, A344416. %K A025065 nonn %O A025065 0,3 %A A025065 _Clark Kimberling_ %E A025065 Edited by _N. J. A. Sloane_, Dec 29 2007 %E A025065 Prepended a(0)=1, added more terms, _Joerg Arndt_, Mar 11 2014