This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025109 #13 Jul 14 2022 12:07:16 %S A025109 0,0,1,2,3,0,0,0,1,2,3,5,8,13,21,34,55,0,1,2,3,5,8,13,21,34,55,89,144, %T A025109 233,377,610,987,1598,2586,4184,6770,8,13,21,34,55,89,144,233,377,610, %U A025109 987,1597,2584,4181,6765,10946,17711,28658,46370,75028,121398,196426,317824,514250 %N A025109 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = (F(2), F(3), F(4), ...), t = A023533. %H A025109 G. C. Greubel, <a href="/A025109/b025109.txt">Table of n, a(n) for n = 2..5000</a> %F A025109 a(n) = Sum_{k=1..floor(n/2)} Fibonacci(k+1)*A023533(n-k+1). %t A025109 A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] + 2, 3] != n, 0, 1]; %t A025109 A025109[n_]:= A025109[n]= Sum[Fibonacci[k+1]*A023533[n+1-k], {k, Floor[n/2]}]; %t A025109 Table[A025109[n], {n, 2, 100}] (* _G. C. Greubel_, Jul 14 2022 *) %o A025109 (Magma) %o A025109 A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; %o A025109 [(&+[Fibonacci(k+1)*A023533(n-k+1): k in [1..Floor(n/2)]]): n in [2..100]]; // _G. C. Greubel_, Jul 14 2022 %o A025109 (SageMath) %o A025109 def A023533(n): %o A025109 if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0 %o A025109 else: return 1 %o A025109 [sum(fibonacci(k+1)*A023533(n-k+1) for k in (1..(n//2))) for n in (2..100)] # _G. C. Greubel_, Jul 14 2022 %Y A025109 Cf. A000045, A023533, A023613, A024595. %K A025109 nonn %O A025109 2,4 %A A025109 _Clark Kimberling_ %E A025109 a(36) corrected by _Sean A. Irvine_, Aug 07 2019 %E A025109 Offset corrected by _G. C. Greubel_, Jul 14 2022