This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025120 #6 Sep 14 2022 20:40:30 %S A025120 0,0,1,3,4,0,0,0,1,3,4,6,8,9,11,12,14,0,1,3,4,6,8,9,11,12,14,16,17,19, %T A025120 21,22,24,26,30,33,36,8,9,11,12,14,16,17,19,21,22,24,25,27,29,30,32, %U A025120 33,36,40,42,46,50,52,56,58,62,66,68,72,76,22,24,25,27,29,30,32,33,35,37,38,40,42,43,45 %N A025120 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000201 (lower Wythoff sequence), t = A023533. %H A025120 G. C. Greubel, <a href="/A025120/b025120.txt">Table of n, a(n) for n = 1..5000</a> %t A025120 b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}]; %t A025120 A025120[n_]:= A025120[n]= Sum[Floor[(n-j+2)*GoldenRatio]*b[j], {j, Floor[(n+4)/2], n+1}]; %t A025120 Table[A025120[n], {n,100}] (* _G. C. Greubel_, Sep 14 2022 *) %o A025120 (Magma) %o A025120 A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; %o A025120 A025120:= func< n | (&+[Floor(k*(1+Sqrt(5))/2)*A023533(n+2-k): k in [1..Floor((n+1)/2)]]) >; %o A025120 [A025120(n): n in [1..100]]; // _G. C. Greubel_, Sep 14 2022 %o A025120 (SageMath) %o A025120 @CachedFunction %o A025120 def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..13)) %o A025120 @CachedFunction %o A025120 def A025120(n): return sum(floor((n-j+2)*golden_ratio)*b(j) for j in (((n+4)//2)..n+1)) %o A025120 [A025120(n) for n in (1..100)] # _G. C. Greubel_, Sep 14 2022 %Y A025120 Cf. A000201, A023533. %K A025120 nonn %O A025120 1,4 %A A025120 _Clark Kimberling_