This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025126 #9 Sep 15 2022 06:24:20 %S A025126 1,1,0,1,1,1,2,2,1,2,2,1,2,2,2,2,2,2,2,3,3,2,3,3,3,3,3,2,3,3,3,3,3,2, %T A025126 3,3,2,3,4,4,4,4,3,4,4,4,4,4,4,4,4,4,3,4,3,4,4,3,4,4,4,4,4,3,4,4,4,4, %U A025126 5,5,5,5,5,4,5,5,5,5,5,5,5,5,4,5,5,4,5,5,4,5,5,4,5,5,5,5,5,5,5,5,5,4,5,5,5,5,5,5,5,5,6 %N A025126 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A023533, t = A014306. %H A025126 G. C. Greubel, <a href="/A025126/b025126.txt">Table of n, a(n) for n = 1..5000</a> %t A025126 b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}]; %t A025126 A025126[n_]:= A025126[n]= Sum[(1-b[j+1])*b[n-j+1], {j, Floor[(n+2)/2], n}]; %t A025126 Table[A025126[n], {n,130}] (* _G. C. Greubel_, Sep 14 2022 *) %o A025126 (Magma) %o A025126 A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; %o A025126 A025126:= func< n | (&+[(1-A023533(n+2-k))*A023533(k): k in [1..Floor((n+1)/2)]]) >; %o A025126 [A025126(n): n in [1..130]]; // _G. C. Greubel_, Sep 14 2022 %o A025126 (SageMath) %o A025126 @CachedFunction %o A025126 def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..15)) %o A025126 @CachedFunction %o A025126 def A025126(n): return sum((1-b(j+1))*b(n-j+1) for j in (((n+2)//2)..n)) %o A025126 [A025126(n) for n in (1..130)] # _G. C. Greubel_, Sep 14 2022 %Y A025126 Cf. A014306, A023533. %Y A025126 Cf. A024693. [From _R. J. Mathar_, Oct 23 2008] %K A025126 nonn %O A025126 1,7 %A A025126 _Clark Kimberling_