This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025129 #37 Feb 01 2021 22:15:30 %S A025129 0,6,10,29,43,94,128,231,279,484,584,903,1051,1552,1796,2489,2823, %T A025129 3784,4172,5515,6091,7758,8404,10575,11395,14076,15174,18339,19667, %U A025129 23414,24906,29437,31089,36500,38614,44731,47071,54198,56914,65051,68371,77402,81052,91341 %N A025129 a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes. %C A025129 This is the sum of distinct squarefree semiprimes with prime indices summing to n + 1. A squarefree semiprime is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - _Gus Wiseman_, Dec 05 2020 %H A025129 Reinhard Zumkeller, <a href="/A025129/b025129.txt">Table of n, a(n) for n = 1..10000</a> %H A025129 Gus Wiseman, <a href="/A025129/a025129.txt">Sum of prime(i) * prime(j) for i + j = n, i != j.</a> %F A025129 a(n) = A024697(n) for even n. - _M. F. Hasler_, Apr 06 2014 %e A025129 From _Gus Wiseman_, Dec 05 2020: (Start) %e A025129 The sequence of sums begins (n > 1): %e A025129 6 = 6 %e A025129 10 = 10 %e A025129 29 = 14 + 15 %e A025129 43 = 22 + 21 %e A025129 94 = 26 + 33 + 35 %e A025129 128 = 34 + 39 + 55 %e A025129 231 = 38 + 51 + 65 + 77 %e A025129 279 = 46 + 57 + 85 + 91 %e A025129 (End) %t A025129 f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* _Robert G. Wilson v_, Apr 07 2014 *) %o A025129 (PARI) A025129=n->sum(k=1,n\2,prime(k)*prime(n-k+1)) \\ _M. F. Hasler_, Apr 06 2014 %o A025129 (Haskell) %o A025129 a025129 n = a025129_list !! (n-1) %o A025129 a025129_list= f (tail a000040_list) [head a000040_list] 1 where %o A025129 f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) : %o A025129 f ps (p : qs) (k + 1) %o A025129 -- _Reinhard Zumkeller_, Apr 07 2014 %Y A025129 Cf. A000040, A258323. %Y A025129 The nonsquarefree version is A024697 (shifted right). %Y A025129 Row sums of A338905 (shifted right). %Y A025129 A332765 is the greatest among these squarefree semiprimes. %Y A025129 A001358 lists semiprimes. %Y A025129 A006881 lists squarefree semiprimes. %Y A025129 A014342 is the self-convolution of the primes. %Y A025129 A056239 is the sum of prime indices of n. %Y A025129 A338899/A270650/A270652 give the prime indices of squarefree semiprimes. %Y A025129 A339194 sums squarefree semiprimes grouped by greater prime factor. %Y A025129 Cf. A001221, A005117, A062198, A098350, A168472, A320656, A338900, A338901, A338904, A339114, A339116. %K A025129 nonn %O A025129 1,2 %A A025129 _Clark Kimberling_ %E A025129 Following suggestions by _Robert Israel_ and _N. J. A. Sloane_, initial 0=a(1) added by _M. F. Hasler_, Apr 06 2014