cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025143 Unique sequence a of 1's and 2's such that a(1) = 2 and r(r(a)) = a != r(a), where for any sequence s, r(s) is the sequence of lengths of runs of same symbols in s; r(a) is sequence A025142.

Original entry on oeis.org

2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

References

  • C. Kimberling, Problem 90: Run-length sequences, Mathematische Semesterberichte, 44 (1997) 94-95.

Crossrefs

Cf. A025142.
Differs from A014675 in many entries starting at entry 8.
Cf. A078880 (satisfies s = r(s)), A288724 (satisfies s = r(r(r(s)))).