This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025147 #86 Nov 09 2023 12:20:10 %S A025147 1,0,1,1,1,2,2,3,3,5,5,7,8,10,12,15,17,21,25,29,35,41,48,56,66,76,89, %T A025147 103,119,137,159,181,209,239,273,312,356,404,460,522,591,669,757,853, %U A025147 963,1085,1219,1371,1539,1725,1933,2164,2418,2702,3016,3362,3746,4171,4637,5155 %N A025147 Number of partitions of n into distinct parts >= 2. %C A025147 From _R. J. Mathar_, Jul 31 2008: (Start) %C A025147 These "partitions of n into distinct parts >= k" and "partitions of n into distinct parts, the least being k-1" come in pairs of similar, almost shifted but not identical, sequences: %C A025147 A025147, A096765 (k=2) %C A025147 A025148, A096749 (k=3) %C A025147 A025149, A026824 (k=4) %C A025147 A025150, A026825 (k=5) %C A025147 A025151, A026826 (k=6) %C A025147 A025152, A026827 (k=7) %C A025147 A025153, A026828 (k=8) %C A025147 A025154, A026829 (k=9) %C A025147 A025155, A026830 (k=10) %C A025147 A096740, A026831 (k=11) %C A025147 The distinction in the definitions is that "distinct parts >= k" sets a lower bound to all parts, whereas "the least being ..." means that the lower limit must be attained by one of the parts. (End) %C A025147 From _N. J. A. Sloane_, Sep 28 2008: (Start) %C A025147 Generating functions and Maple programs for the sequences in the first and second columns of the above list are respectively: %C A025147 For A025147, A025148, etc.: %C A025147 f:=proc(k) product(1+x^j, j=k..100): series(%,x,100): seriestolist(%); end; %C A025147 For A096765, A096749, etc.: %C A025147 g:=proc(k) x^(k-1)*product(1+x^j, j=k..100): series(%,x,100): seriestolist(%); end; (End) %C A025147 Also number of partitions of n+1 into distinct parts, the least being 1. %C A025147 Number of different sums from 1+[1,3]+[1,4]+...+[1,n]. - _Jon Perry_, Jan 01 2004 %C A025147 Also number of partitions of n such that if k is the largest part, then all parts from 1 to k occur, k occurring at least twice. Example: a(7)=3 because we have [2,2,2,1],[2,2,1,1,1] and [1,1,1,1,1,1,1]. - _Emeric Deutsch_, Apr 09 2006 %C A025147 Also number of partitions of n+1 such that if k is the largest part, then all parts from 1 to k occur, k occurring exactly once. Example: a(7)=3 because we have [3,2,2,1],[3,2,1,1,1] and [2,1,1,1,1,1,1] (there is a simple bijection with the partitions defined before). - _Emeric Deutsch_, Apr 09 2006 %C A025147 Also number of partitions of n+1 into distinct parts where the number of parts is itself a part. - _Reinhard Zumkeller_, Nov 04 2007 %C A025147 Partial sums give A038348 (observed by _Jonathan Vos Post_, proved by several correspondents). %C A025147 Trivially, number of partitions of n into distinct parts (as ascending lists) such that the first part is not 1, the second not 2, the third not 3, etc., see example. - _Joerg Arndt_, Jun 10 2013 %C A025147 Convolution with A033999 gives A270144 (apart from the offset). - _R. J. Mathar_, Jun 18 2016 %D A025147 Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891). %D A025147 Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501. %H A025147 Alois P. Heinz, <a href="/A025147/b025147.txt">Table of n, a(n) for n = 0..10000</a> (terms n = 0..100 from Reinhard Zumkeller) %H A025147 Kevin Beanland and Hung Viet Chu, <a href="https://arxiv.org/abs/2311.01926">On Schreier-type Sets, Partitions, and Compositions</a>, arXiv:2311.01926 [math.CO], 2023. %H A025147 Rebekah Ann Gilbert, <a href="http://www.math.uiuc.edu/~rgilber1/AFineRediscovery_Gilbert.pdf">A Fine Rediscovery</a>, 2014. %H A025147 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=798">Encyclopedia of Combinatorial Structures 798</a> %H A025147 Mircea Merca, <a href="http://dx.doi.org/10.1016/j.jnt.2015.08.014">Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer</a>, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function q_1(n), see Corollary 3.7. %F A025147 G.f.: Product_{k>=2} (1+x^k). %F A025147 a(n) = A000009(n)-a(n-1) = Sum_{0<=k<=n} (-1)^k*A000009(n-k). - _Henry Bottomley_, May 09 2002 %F A025147 a(n)=t(n, 1), where t(n, k)=1+Sum_{i>j>k and i+j=n} t(i, j), 2<=k<=n. - _Reinhard Zumkeller_, Jan 01 2003 %F A025147 G.f.: 1 + Sum_{k=1..infinity} (x^(k*(k+3)/2) / Product_{j=1..k} (1-x^j)). - _Emeric Deutsch_, Apr 09 2006 %F A025147 The previous g.f. is a special case of the g.f. for partitions into distinct parts >= L, Sum_{n>=0} ( x^(n*(n+2*L-1)/2) / Product_{k=1..n} (1-x^k) ). - _Joerg Arndt_, Mar 24 2011 %F A025147 G.f.: Sum_{n>=1} ( x^(n*(n+1)/2-1) / Product_{k=1..n-1} (1-x^k) ), a special case of the g.f. for partitions into distinct parts >= L, Sum_{n>=L-1} ( x^(n*(n+1)/2-L*(L-1)/2) / Product_{k=1..n-(L-1)} (1-x^k) ). - _Joerg Arndt_, Mar 27 2011 %F A025147 a(n) = Sum_{1<k<=floor((n+2)/2)} A060016(n-k+1,k-1), for n>0. - _Reinhard Zumkeller_, Nov 04 2007 %F A025147 a(n) = A096765(n+1). - _R. J. Mathar_, Jul 31 2008 %F A025147 From _Vaclav Kotesovec_, Aug 16 2015: (Start) %F A025147 a(n) ~ 1/2 * A000009(n). %F A025147 a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). %F A025147 (End) %e A025147 a(7) = 3, from {{3, 4}, {2, 5}, {7}} %e A025147 From _Joerg Arndt_, Jun 10 2013: (Start) %e A025147 There are a(17) = 21 partitions of 17 into distinct parts >=2: %e A025147 01: [ 2 3 4 8 ] %e A025147 02: [ 2 3 5 7 ] %e A025147 03: [ 2 3 12 ] %e A025147 04: [ 2 4 5 6 ] %e A025147 05: [ 2 4 11 ] %e A025147 06: [ 2 5 10 ] %e A025147 07: [ 2 6 9 ] %e A025147 08: [ 2 7 8 ] %e A025147 09: [ 2 15 ] %e A025147 10: [ 3 4 10 ] %e A025147 11: [ 3 5 9 ] %e A025147 12: [ 3 6 8 ] %e A025147 13: [ 3 14 ] %e A025147 14: [ 4 5 8 ] %e A025147 15: [ 4 6 7 ] %e A025147 16: [ 4 13 ] %e A025147 17: [ 5 12 ] %e A025147 18: [ 6 11 ] %e A025147 19: [ 7 10 ] %e A025147 20: [ 8 9 ] %e A025147 21: [ 17 ] %e A025147 (End) %p A025147 g:=product(1+x^j,j=2..65): gser:=series(g,x=0,62): seq(coeff(gser,x,n),n=0..57); # _Emeric Deutsch_, Apr 09 2006 %p A025147 with(combstruct):ZL := {L = PowerSet(Sequence(Z,card>=2)) },unlabeled:seq(count([L,ZL],size=i),i=0..57); # _Zerinvary Lajos_, Mar 09 2007 %t A025147 CoefficientList[Series[Product[1+q^n, {n, 2, 60}], {q, 0, 60}], q] %t A025147 FoldList[ PartitionsQ[ #2+1 ]-#1&, 0, Range[ 64 ] ] %t A025147 (* also *) %t A025147 d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 && Min[#] >= 2 &]; Table[d[n], {n, 12}] (* strict partitions, parts >= 2 *) %t A025147 Table[Length[d[n]], {n, 40}] (* A025147 for n >= 1 *) %t A025147 (* _Clark Kimberling_, Mar 07 2014 *) %t A025147 p[_, 0] = 1; p[k_, m_] := p[k, m] = If[m < k, 0, p[k+1, m-k] + p[k+1, m]]; Table[p[2, m], {m, 0, 59}] (* _Jean-François Alcover_, Apr 17 2014, after _Reinhard Zumkeller_ *) %o A025147 (Haskell) %o A025147 a025147 = p 2 where %o A025147 p _ 0 = 1 %o A025147 p k m = if m < k then 0 else p (k + 1) (m - k) + p (k + 1) m %o A025147 -- _Reinhard Zumkeller_, Dec 28 2011 %o A025147 (PARI) a(n)=if(n,my(v=partitions(n));sum(i=1,#v,v[i][1]>1&&v[i]==vecsort(v[i],,8)),1) \\ _Charles R Greathouse IV_, Nov 20 2012 %Y A025147 Cf. A015744, A015745, A015746, A015750, A015753, A015754, A015755, A002865. %K A025147 nonn,easy,nice %O A025147 0,6 %A A025147 _Clark Kimberling_ %E A025147 Corrected and extended by _Dean Hickerson_, Oct 10 2001