This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025166 #15 Jul 17 2020 22:58:58 %S A025166 -1,-1,-1,7,127,1711,23231,334391,5144063,84149983,1446872959, %T A025166 25661798119,454494403199,7489030040207,89680375568447, %U A025166 -759618144120809,-127049044802971649,-7480338932613448769,-369274690558092738817,-17262533154073740329017 %N A025166 E.g.f.: -exp(-x/(1-2*x))/(1-2*x). %C A025166 Polynomials in A021009 evaluated at 2. %H A025166 Vaclav Kotesovec, <a href="/A025166/b025166.txt">Table of n, a(n) for n = 0..400</a> %F A025166 Conjecture: a(n) + (-4*n+3)*a(n-1) + 4*(n-1)^2*a(n-2) = 0. - _R. J. Mathar_, Feb 05 2013 %F A025166 a(n) = -(-2)^n*KummerU(-n, 1, 1/2). - _Peter Luschny_, Feb 12 2020 %F A025166 Sum_{n>=0} a(n) * x^n / (n!)^2 = -exp(2*x) * BesselJ(0,2*sqrt(x)). - _Ilya Gutkovskiy_, Jul 17 2020 %p A025166 a := n -> -(-2)^n*KummerU(-n, 1, 1/2): %p A025166 seq(simplify(a(n)), n=0..19); # _Peter Luschny_, Feb 12 2020 %t A025166 Table[ -n! 2^n LaguerreL[ n, 1/2 ], {n, 0, 12} ] %Y A025166 Cf. A025167, A025168. %K A025166 sign %O A025166 0,4 %A A025166 _Wouter Meeussen_ %E A025166 Corrected and extended by _Vladeta Jovovic_, Jan 29 2003