A025181 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A025177.
1, 3, 11, 35, 111, 343, 1050, 3186, 9615, 28897, 86592, 258908, 772863, 2304225, 6863496, 20429784, 60779403, 180751617, 537386595, 1597372371, 4747537641, 14108988509, 41928203694, 124598731750, 370279082745, 1100428538391, 3270534249843
Offset: 3
Keywords
Formula
Conjecture: +(n+3)*a(n) +(-5*n-7)*a(n-1) +(3*n-7)*a(n-2) +(11*n-7)*a(n-3) +4*(-n+6)*a(n-4) +6*(-n+5)*a(n-5)=0. - R. J. Mathar, Feb 25 2015
Conjecture: -(n+3)*(n-3)*(4*n^2-12*n+17)*a(n) +(n-1)*(8*n^3-20*n^2+30*n-81)*a(n-1) +3*(n-1)*(n-2)*(4*n^2-4*n+9)*a(n-2)=0. - R. J. Mathar, Feb 25 2015