cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025182 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A025177.

This page as a plain text file.
%I A025182 #8 May 03 2023 18:01:28
%S A025182 1,4,16,56,189,616,1968,6192,19272,59488,182468,556920,1693146,
%T A025182 5131296,15511344,46791072,140905197,423709956,1272596136,3818355464,
%U A025182 11447074309,34292702840,102670377120,307230479920,918951019155,2747624937876
%N A025182 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A025177.
%C A025182 Apparently first differences of A014533.
%F A025182 Conjecture: -(n-4)*(n+4)*a(n) +(4*n^2-7*n-29)*a(n-1) +(-2*n^2+17*n-2)*a(n-2) -(4*n+1)*(n-3)*a(n-3) +3*(n-3)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Feb 25 2015
%F A025182 Conjecture: -(n-4)*(n+4)*(n^2-3*n+6)*a(n) +(n-1)*(2*n^3-5*n^2+11*n-36)*a(n-1) +3*(n-1)*(n-2)*(n^2-n+4)*a(n-2)=0. - _R. J. Mathar_, Feb 25 2015
%Y A025182 Cf. A014533, A025177.
%K A025182 nonn
%O A025182 4,2
%A A025182 _Clark Kimberling_