cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025268 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, with initial values 1,1,1,1.

Original entry on oeis.org

1, 1, 1, 1, 4, 11, 32, 95, 284, 860, 2630, 8115, 25242, 79080, 249342, 790719, 2520546, 8072216, 25961150, 83814536, 271538192, 882527618, 2876712308, 9402284815, 30806948110, 101172278362, 332965892290, 1097990333320, 3627433618396
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    Phi:=proc(t,u,M) local i,a; a:=Array(0..M);
    for i from 0 to t-1 do a[i]:=u[i+1]; od:
    for i from t to M do a[i]:=a[i-1]+add(a[j]*a[i-1-j],j=0..i-2); od:
    [seq(a[i],i=0..M)]; end;
    Phi(4,[1,1,1,1],30);
    # N. J. A. Sloane, Oct 29 2008
  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)

Formula

Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([1,1,1,1]). - Gary W. Adamson, Oct 27 2008
Conjecture: n*a(n) +(n+1)*a(n-1) +10*(-2*n+5)*a(n-2) +2*(2*n-9)*a(n-3) +2*(14*n-79)*a(n-4) +40*(n-7)*a(n-5)=0. - R. J. Mathar, Jan 25 2015
G.f.: 1/2 - sqrt(8*x^4+4*x^3-4*x+1)/2. - Vaclav Kotesovec, Jan 25 2015
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3) - 8*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015