A025268 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, with initial values 1,1,1,1.
1, 1, 1, 1, 4, 11, 32, 95, 284, 860, 2630, 8115, 25242, 79080, 249342, 790719, 2520546, 8072216, 25961150, 83814536, 271538192, 882527618, 2876712308, 9402284815, 30806948110, 101172278362, 332965892290, 1097990333320, 3627433618396
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1857
Programs
-
Maple
Phi:=proc(t,u,M) local i,a; a:=Array(0..M); for i from 0 to t-1 do a[i]:=u[i+1]; od: for i from t to M do a[i]:=a[i-1]+add(a[j]*a[i-1-j],j=0..i-2); od: [seq(a[i],i=0..M)]; end; Phi(4,[1,1,1,1],30); # N. J. A. Sloane, Oct 29 2008
-
Mathematica
nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
Formula
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([1,1,1,1]). - Gary W. Adamson, Oct 27 2008
Conjecture: n*a(n) +(n+1)*a(n-1) +10*(-2*n+5)*a(n-2) +2*(2*n-9)*a(n-3) +2*(14*n-79)*a(n-4) +40*(n-7)*a(n-5)=0. - R. J. Mathar, Jan 25 2015
G.f.: 1/2 - sqrt(8*x^4+4*x^3-4*x+1)/2. - Vaclav Kotesovec, Jan 25 2015
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3) - 8*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015