This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025427 #52 Jun 14 2025 21:41:16 %S A025427 0,0,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,1,2,0,1,1,0,0,2, %T A025427 1,1,1,0,2,0,0,2,1,1,1,1,1,0,1,1,1,2,0,1,3,0,1,2,0,2,0,1,2,0,0,1,3,1, %U A025427 1,2,1,0,1,1,2,2,1,2,1,0,0,3,1,2,1,0,3,0,1,3,2,1,0,1,2,0,1,1,2,3,0,3,2,0,1,2,1,2 %N A025427 Number of partitions of n into 3 nonzero squares. %C A025427 The non-vanishing values a(n) give the multiplicities for the numbers n appearing in A000408. See also A024795 where these numbers n are listed a(n) times. For the primitive case see A223730 and A223731. - _Wolfdieter Lang_, Apr 03 2013 %H A025427 R. J. Mathar and R. Zumkeller, <a href="/A025427/b025427.txt">Table of n, a(n) for n = 0..10000</a>, first 5592 terms from R. J. Mathar %H A025427 <a href="/index/Su#ssq">Index to sequences related to sums of squares and cubes</a>. %F A025427 a(A004214(n)) = 0; a(A000408(n)) > 0; a(A025414(n)) = n and a(m) != n for m < A025414(n). - _Reinhard Zumkeller_, Feb 26 2015 %F A025427 a(4n) = a(n). This is because if a number divisible by 4 is the sum of three squares, each of those squares must be even. - _Robert Israel_, Mar 09 2016 %F A025427 a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} A010052(i) * A010052(k) * A010052(n-i-k). - _Wesley Ivan Hurt_, Apr 19 2019 %F A025427 a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^2)). - _Ilya Gutkovskiy_, Apr 19 2019 %e A025427 a(27) = 2 because 1^2 + 1^2 + 5^2 = 27 = 3^2 + 3^2 + 3^2. The second representation is not primitive (gcd(3,3,3) = 3 not 1). %p A025427 A025427 := proc(n) %p A025427 local a,x,y,zsq ; %p A025427 a := 0 ; %p A025427 for x from 1 do %p A025427 if 3*x^2 > n then %p A025427 return a; %p A025427 end if; %p A025427 for y from x do %p A025427 if x^2+2*y^2 > n then %p A025427 break; %p A025427 end if; %p A025427 zsq := n-x^2-y^2 ; %p A025427 if issqr(zsq) then %p A025427 a := a+1 ; %p A025427 end if; %p A025427 end do: %p A025427 end do: %p A025427 end proc: # _R. J. Mathar_, Sep 15 2015 %p A025427 # second Maple program: %p A025427 b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), %p A025427 `if`(i<1 or t<1, 0, b(n, i-1, t)+ %p A025427 `if`(i^2>n, 0, b(n-i^2, i, t-1)))) %p A025427 end: %p A025427 a:= n-> b(n, isqrt(n), 3): %p A025427 seq(a(n), n=0..107); # _Alois P. Heinz_, Jun 14 2025 %t A025427 Count[PowersRepresentations[#, 3, 2], pr_ /; (Times @@ pr) > 0]& /@ Range[0, 120] (* _Jean-François Alcover_, Jan 30 2018 *) %o A025427 (Haskell) %o A025427 a025427 n = sum $ map f zs where %o A025427 f x = sum $ map (a010052 . (n - x -)) $ %o A025427 takeWhile (<= div (n - x) 2) $ dropWhile (< x) zs %o A025427 zs = takeWhile (< n) $ tail a000290_list %o A025427 -- _Reinhard Zumkeller_, Feb 26 2015 %o A025427 (PARI) a(n)=if(n<3, return(0)); sum(i=sqrtint((n-1)\3)+1,sqrtint(n-2), my(t=n-i^2); sum(j=sqrtint((t-1)\2)+1,min(sqrtint(t-1),i), issquare(t-j^2))) \\ _Charles R Greathouse IV_, Aug 05 2024 %Y A025427 Cf. A000408, A024795, A223730 (multiplicities for the primitive case). - _Wolfdieter Lang_, Apr 03 2013 %Y A025427 Column k=3 of A243148. %Y A025427 Cf. A000290, A010052, A004214, A025321, A025414, A025426. %K A025427 nonn,easy %O A025427 0,28 %A A025427 _David W. Wilson_