This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025453 #17 Jan 23 2025 12:40:30 %S A025453 1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,2,2, %T A025453 2,3,2,2,1,1,2,2,2,2,2,1,1,1,2,2,1,2,1,1,2,2,3,2,2,2,2,2,2,2,3,3,2,3, %U A025453 3,2,3,2,4,2,2,3,2,2,2,2,2,3,3,3,3,2,3,2,2,3,2,4,3,3,3,2,3,3,3,3,3,2,2,2,2,3,2,3 %N A025453 Number of partitions of n into 9 nonnegative cubes. %H A025453 David A. Corneth, <a href="/A025453/b025453.txt">Table of n, a(n) for n = 0..10000</a> %e A025453 a(8) = 2 via 8*0^3 + 1*2^3 = 1 * 0^3 + 8*1^3. %p A025453 f:= proc(x,m,M) %p A025453 local i; %p A025453 option remember; %p A025453 if x = 0 then return 1 %p A025453 elif m = 0 then return 0 %p A025453 fi; %p A025453 add(procname(x-i^3, m-1, i), i=1..min(M,floor(x^(1/3)))); %p A025453 end proc: %p A025453 map(f, [$0..150],9,150); # _Robert Israel_, Jan 23 2025 %o A025453 (PARI) first(n) = my(v=vector(n), maxb=sqrtnint(n, 3)); forvec(x=vector(9, i, [0, maxb]), s=sum(i=1, 9, x[i]^3); if(0<s && s<=n, v[s]++); , 1); concat(1, v) \\ _David A. Corneth_, Jan 23 2025 %Y A025453 Cf. A025446, A025447, A025448, A025449, A025450, A025451, A025452, this sequence, A025454. %K A025453 nonn %O A025453 0,9 %A A025453 _David W. Wilson_