This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025458 #25 May 16 2021 01:55:58 %S A025458 0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1, %T A025458 0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0, %U A025458 1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0 %N A025458 Number of partitions of n into 5 positive cubes. %C A025458 a(n) > 2 at n= 766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044,... - _R. J. Mathar_, Sep 15 2015 %C A025458 The first term > 1 is a(157) = 2. - _Michel Marcus_, Apr 25 2019 %H A025458 Robert Israel, <a href="/A025458/b025458.txt">Table of n, a(n) for n = 0..10000</a> %H A025458 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %F A025458 a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^(k^3)). - _Ilya Gutkovskiy_, Apr 23 2019 %p A025458 A025458 := proc(n) %p A025458 local a,x,y,z,u,vcu ; %p A025458 a := 0 ; %p A025458 for x from 1 do %p A025458 if 5*x^3 > n then %p A025458 return a; %p A025458 end if; %p A025458 for y from x do %p A025458 if x^3+4*y^3 > n then %p A025458 break; %p A025458 end if; %p A025458 for z from y do %p A025458 if x^3+y^3+3*z^3 > n then %p A025458 break; %p A025458 end if; %p A025458 for u from z do %p A025458 if x^3+y^3+z^3+2*u^3 > n then %p A025458 break; %p A025458 end if; %p A025458 vcu := n-x^3-y^3-z^3-u^3 ; %p A025458 if isA000578(vcu) then %p A025458 a := a+1 ; %p A025458 end if; %p A025458 end do: %p A025458 end do: %p A025458 end do: %p A025458 end do: %p A025458 end proc: # _R. J. Mathar_, Sep 15 2015 %t A025458 a[n_] := IntegerPartitions[n, {5}, Range[n^(1/3) // Ceiling]^3] // Length; %t A025458 a /@ Range[0, 157] (* _Jean-François Alcover_, Jun 20 2020 *) %Y A025458 Column 5 of A320841, which cross-references the equivalent sequences for other numbers of positive cubes. %Y A025458 Positions of values: A057906 (0), A003328 (nonzero), A048926 (1), A048927 (2), A343705 (3), A344035 (4). %K A025458 nonn %O A025458 0,158 %A A025458 _David W. Wilson_ %E A025458 Second offset from _Michel Marcus_, Apr 25 2019