This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025459 #24 Jan 09 2023 07:41:18 %S A025459 0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0, %T A025459 1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1, %U A025459 0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,1,0,0,0,1,0,1,1,0,0,0,1,0,1,1,0,0 %N A025459 Number of partitions of n into 6 positive cubes. %H A025459 Robert Israel, <a href="/A025459/b025459.txt">Table of n, a(n) for n = 0..10000</a> %H A025459 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %F A025459 a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^(k^3)). - _Ilya Gutkovskiy_, Apr 23 2019 %p A025459 A025459 := proc(n) %p A025459 local a,x,y,z,u,v,wcu ; %p A025459 a := 0 ; %p A025459 for x from 1 do %p A025459 if 6*x^3 > n then %p A025459 return a; %p A025459 end if; %p A025459 for y from x do %p A025459 if x^3+5*y^3 > n then %p A025459 break; %p A025459 end if; %p A025459 for z from y do %p A025459 if x^3+y^3+4*z^3 > n then %p A025459 break; %p A025459 end if; %p A025459 for u from z do %p A025459 if x^3+y^3+z^3+3*u^3 > n then %p A025459 break; %p A025459 end if; %p A025459 for v from u do %p A025459 if x^3+y^3+z^3+u^3+2*v^3 > n then %p A025459 break; %p A025459 end if; %p A025459 wcu := n-x^3-y^3-z^3-u^3-v^3 ; %p A025459 if isA000578(wcu) then %p A025459 a := a+1 ; %p A025459 end if; %p A025459 end do: %p A025459 end do: %p A025459 end do: %p A025459 end do: %p A025459 end do: %p A025459 end proc: # _R. J. Mathar_, Sep 15 2015 %p A025459 # Alternative: %p A025459 N:= 200: %p A025459 G:= mul(1/(1-y*x^(k^3)),k=1..floor(N^(1/3))): %p A025459 C6:= coeff(series(G,y,7),y,6): %p A025459 S:= series(C6,x,N+1): %p A025459 seq(coeff(S,x,i),i=0..N); # _Robert Israel_, May 10 2020 %t A025459 a[n_] := Count[PowersRepresentations[n, 6, 3], pr_List /; FreeQ[pr, 0]]; %t A025459 a /@ Range[0, 200] (* _Jean-François Alcover_, Jun 22 2020 *) %t A025459 Table[Count[IntegerPartitions[n,{6}],_?(AllTrue[Surd[#,3],IntegerQ]&)],{n,0,110}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 06 2021 *) %Y A025459 Cf. A003329, A048929, A048930, A048931. %K A025459 nonn %O A025459 0,159 %A A025459 _David W. Wilson_