This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025468 #26 Feb 05 2023 09:24:10 %S A025468 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, %T A025468 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, %U A025468 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A025468 a(n) is the number of partitions of n into 2 distinct positive cubes. %C A025468 In other words, number of solutions to the equation n = x^3 + y^3 with x > y > 0. The first value > 1 is a(1729) = 2. - _Antti Karttunen_, Aug 29 2017 %H A025468 Antti Karttunen, <a href="/A025468/b025468.txt">Table of n, a(n) for n = 0..100000</a> %H A025468 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %F A025468 From _Antti Karttunen_, Aug 28-29 2017: (Start) %F A025468 a(n) = A025465(n) - A025469(n). %F A025468 a(n) <= A025455(n). %F A025468 (End) %o A025468 (Scheme) (define (A025468 n) (let loop ((x (A048766 n)) (s 0)) (let* ((x3 (A000578 x)) (y3 (- n x3))) (if (<= x3 y3) s (loop (- x 1) (+ s (if (and (> y3 0) (= (A000578 (A048766 y3)) y3)) 1 0))))))) ;; _Antti Karttunen_, Aug 28 2017 %Y A025468 Cf. A000578, A048766, A025455, A025465, A025469. %K A025468 nonn %O A025468 0,1730 %A A025468 _David W. Wilson_