This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025473 #69 Feb 16 2025 08:32:35 %S A025473 1,2,3,2,5,7,2,3,11,13,2,17,19,23,5,3,29,31,2,37,41,43,47,7,53,59,61, %T A025473 2,67,71,73,79,3,83,89,97,101,103,107,109,113,11,5,127,2,131,137,139, %U A025473 149,151,157,163,167,13,173,179,181,191,193,197,199,211,223,227,229,233,239 %N A025473 a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961). %C A025473 This sequence is related to the cyclotomic sequences A013595 and A020500, leading to the procedure used in the Mathematica program. - _Roger L. Bagula_, Jul 08 2008 %C A025473 "LCM numeral system": a(n+1) is radix for index n, n >= 0; a(-n+1) is 1/radix for index n, n < 0. - _Daniel Forgues_, May 03 2014 %C A025473 This is the LCM-transform of A000961; same as A014963 with all 1's (except a(1)) removed. - _David James Sycamore_, Jan 11 2024 %D A025473 Paul J. McCarthy, Algebraic Extensions of Fields, Dover books, 1976, pages 40, 69 %H A025473 David Wasserman, <a href="/A025473/b025473.txt">Table of n, a(n) for n = 1..1000</a> %H A025473 OEIS Wiki, <a href="/wiki/LCM_numeral_system">LCM numeral system</a> %H A025473 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclotomicPolynomial.html">Cyclotomic Polynomial</a> %F A025473 a(n) = A006530(A000961(n)) = A020639(A000961(n)). - _David Wasserman_, Feb 16 2006 %F A025473 From _Reinhard Zumkeller_, Jun 26 2011: (Start) %F A025473 A000961(n) = a(n)^A025474(n). %F A025473 A056798(n) = a(n)^(2*A025474(n)). %F A025473 A192015(n) = A025474(n)*a(n)^(A025474(n)-1). (End) %F A025473 a(1) = A051451(1) ; for n > 1, a(n) = A051451(n)/A051451(n-1). - _Peter Munn_, Aug 11 2024 %p A025473 cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi; %p A025473 f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or %p A025473 op(2,opf) <= level then RETURN() fi; op(1,opf) end: %p A025473 A025473_list := n -> [1,seq(cvm(i,0),i=1..n)]; %p A025473 A025473_list(240); # _Peter Luschny_, Sep 21 2011 %t A025473 a = Join[{1}, Flatten[Table[If[PrimeQ[Apply[Plus, CoefficientList[Cyclotomic[n, x], x]]], Apply[Plus, CoefficientList[Cyclotomic[n, x], x]], {}], {n, 1, 1000}]]] (* _Roger L. Bagula_, Jul 08 2008 *) %t A025473 Join[{1}, First@ First@# & /@ FactorInteger@ Select[Range@ 240, PrimePowerQ]] (* _Robert G. Wilson v_, Aug 17 2017 *) %o A025473 (Sage) %o A025473 def A025473_list(n) : %o A025473 R = [1] %o A025473 for i in (2..n) : %o A025473 if i.is_prime_power() : %o A025473 R.append(prime_divisors(i)[0]) %o A025473 return R %o A025473 A025473_list(239) # _Peter Luschny_, Feb 07 2012 %o A025473 (Haskell) %o A025473 a025473 = a020639 . a000961 -- _Reinhard Zumkeller_, Aug 14 2013 %o A025473 (PARI) print1(1); for(n=2,1e3, if(isprimepower(n,&p), print1(", "p))) \\ _Charles R Greathouse IV_, Apr 28 2014 %o A025473 (Python) %o A025473 from sympy import primepi, integer_nthroot, primefactors %o A025473 def A025473(n): %o A025473 if n == 1: return 1 %o A025473 def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) %o A025473 m, k = n, f(n) %o A025473 while m != k: %o A025473 m, k = k, f(k) %o A025473 return primefactors(m)[0] # _Chai Wah Wu_, Aug 15 2024 %Y A025473 Cf. A013595, A020500, A025476. %Y A025473 Cf. A000961, A014963, A051451. %K A025473 easy,nonn,nice %O A025473 1,2 %A A025473 _David W. Wilson_, Dec 11 1999 %E A025473 Offset corrected by _David Wasserman_, Dec 22 2008