This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025476 #35 Aug 16 2024 08:37:11 %S A025476 2,2,3,2,5,3,2,7,2,3,11,5,2,13,3,2,17,7,19,2,23,5,3,29,31,2,11,37,41, %T A025476 43,2,3,13,47,7,53,5,59,61,2,67,17,71,73,79,3,19,83,89,2,97,101,103, %U A025476 107,109,23,113,11,5,127,2,7,131,137,139,3,149,151,29,157,163,167,13,31,173,179 %N A025476 Prime root of n-th nontrivial prime power (A025475, A246547). %H A025476 Michael De Vlieger, <a href="/A025476/b025476.txt">Table of n, a(n) for n = 1..10000</a> %p A025476 cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi; %p A025476 f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or %p A025476 op(2,opf) <= level then RETURN() fi; op(1,opf) end: %p A025476 A025476_list := n -> seq(cvm(i,1),i=1..n); # n is search limit %p A025476 A025476_list(30000); # _Peter Luschny_, Sep 21 2011 %p A025476 # Alternative: %p A025476 isA246547 := n -> n > 1 and not isprime(n) and type(n, 'primepower'): %p A025476 seq(ifactors(p)[2][1][1], p in select(isA246547, [$1..30000])); # _Peter Luschny_, Jul 15 2023 %t A025476 Transpose[ Flatten[ FactorInteger[ Select[ Range[2, 30000], !PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ]] == 0 &]], 1]][[1]] (* _Robert G. Wilson v_ *) %o A025476 (PARI) forcomposite(n=4,10^5,if( ispower(n, , &p) && isprime(p), print1(p,", "))) \\ _Joerg Arndt_, Sep 11 2021 %o A025476 (Python) %o A025476 from sympy import primepi, integer_nthroot, primefactors %o A025476 def A025476(n): %o A025476 def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) %o A025476 kmin, kmax = 1,2 %o A025476 while f(kmax) >= kmax: %o A025476 kmax <<= 1 %o A025476 while True: %o A025476 kmid = kmax+kmin>>1 %o A025476 if f(kmid) < kmid: %o A025476 kmax = kmid %o A025476 else: %o A025476 kmin = kmid %o A025476 if kmax-kmin <= 1: %o A025476 break %o A025476 return primefactors(kmax)[0] # _Chai Wah Wu_, Aug 15 2024 %Y A025476 Cf. A025473, A025475, A048148, A246547. %K A025476 easy,nonn %O A025476 1,1 %A A025476 _David W. Wilson_