cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025532 a(n) is the sum of exponents in the prime factorization of lcm{C(n,0), C(n,1), ..., C(n,n)}.

This page as a plain text file.
%I A025532 #26 Feb 03 2018 12:08:10
%S A025532 0,0,1,1,3,2,4,3,5,5,7,5,8,7,7,6,10,8,11,9,10,10,12,9,12,12,12,12,15,
%T A025532 13,16,13,16,16,16,14,18,17,17,15,19,17,20,18,18,19,21,17,21,20,21,20,
%U A025532 23,20,22,20,22,22,24,21,25,24,23,21,25,24,27,25,26,25,28,24,29,28,27
%N A025532 a(n) is the sum of exponents in the prime factorization of lcm{C(n,0), C(n,1), ..., C(n,n)}.
%H A025532 Vincenzo Librandi, <a href="/A025532/b025532.txt">Table of n, a(n) for n = 0..2000</a>
%F A025532 a(n) = A025528(n + 1) - A001222(n + 1). - _Luc Rousseau_, Jan 04 2018
%F A025532 a(n) = A001222(A002944(n+1)). - _Michel Marcus_, Jan 05 2018
%t A025532 {0, 0}~Join~Table[Total@ FactorInteger[LCM @@ Array[Binomial[n, #] &, n]][[All, -1]], {n, 2, 74}] (* _Michael De Vlieger_, Jan 13 2018 *)
%o A025532 (PARI) for(n=0, 100, l=1; for(k=0, n, l=lcm(l,binomial(n,k))); v=factor(l); s=0; for(k=1, matsize(v)[1], s=s+v[k,2]); print1(s","))
%o A025532 (PARI) a(n) = bigomega(lcm(vector(n+1, k, binomial(n, k-1)))); \\ _Michel Marcus_, Jan 06 2018
%K A025532 nonn
%O A025532 0,5
%A A025532 _Clark Kimberling_
%E A025532 More terms from _Ralf Stephan_, Mar 28 2003