cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025567 a(n) = T(n,n+1), where T is the array defined in A025564.

Original entry on oeis.org

1, 4, 13, 40, 120, 356, 1050, 3088, 9069, 26620, 78133, 229384, 673699, 1979628, 5820195, 17121312, 50394579, 148413996, 437324919, 1289330520, 3803175474, 11223840012, 33139076292, 97889042384, 289276841475, 855205791076, 2529279459099
Offset: 1

Views

Author

Keywords

Crossrefs

Pairwise sums of A014531.

Programs

  • Mathematica
    T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0;
    a[n_] := T[n+1, n+3];
    Array[a, 27] (* Jean-François Alcover, Oct 30 2018 *)
  • PARI
    x='x+O('x^66); Vec((x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3)) \\ Joerg Arndt, May 01 2013

Formula

G.f.: (x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3). - Mark van Hoeij, May 01 2013
Conjecture: (n+3)*a(n) +4*(-n-2)*a(n-1) +2*a(n-2) +8*(n-1)*a(n-3) +3*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 03 2015
Conjecture: (n-1)*(n-2)*(n+3)*a(n) -2*n*(n-2)*(n+2)*a(n-1) -3*n*(n-1)^2*a(n-2)=0. - R. J. Mathar, Apr 03 2015
a(n) ~ 2 * 3^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 02 2024