A025567 a(n) = T(n,n+1), where T is the array defined in A025564.
1, 4, 13, 40, 120, 356, 1050, 3088, 9069, 26620, 78133, 229384, 673699, 1979628, 5820195, 17121312, 50394579, 148413996, 437324919, 1289330520, 3803175474, 11223840012, 33139076292, 97889042384, 289276841475, 855205791076, 2529279459099
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1000
- Jean-Luc Baril, Richard Genestier, Sergey Kirgizov, Pattern distributions in Dyck paths with a first return decomposition constrained by height, arXiv:1911.03119 [math.CO], 2019.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
Crossrefs
Pairwise sums of A014531.
Programs
-
Mathematica
T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0; a[n_] := T[n+1, n+3]; Array[a, 27] (* Jean-François Alcover, Oct 30 2018 *)
-
PARI
x='x+O('x^66); Vec((x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3)) \\ Joerg Arndt, May 01 2013
Formula
G.f.: (x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3). - Mark van Hoeij, May 01 2013
Conjecture: (n+3)*a(n) +4*(-n-2)*a(n-1) +2*a(n-2) +8*(n-1)*a(n-3) +3*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 03 2015
Conjecture: (n-1)*(n-2)*(n+3)*a(n) -2*n*(n-2)*(n+2)*a(n-1) -3*n*(n-1)^2*a(n-2)=0. - R. J. Mathar, Apr 03 2015
a(n) ~ 2 * 3^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 02 2024