This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025587 #54 May 02 2018 12:50:39 %S A025587 1,3,7,15,27,703,1819,4255,4591,9663,26623,60975,77671,113383,159487, %T A025587 1212415,2684647,3041127,3873535,4637979,5656191,6416623,6631675, %U A025587 19638399,80049391,210964383,319804831,1410123943,70141259775,77566362559 %N A025587 '3x+1' record-setters (blowup factor). %C A025587 This sequence uses the highest even number reached, which will always be a power of 2 larger than A295163. - _Howard A. Landman_, Nov 20 2017 %C A025587 A proper subsequence of A006884. - _Robert G. Wilson v_, Dec 23 2017 %C A025587 Let m be the maximum value in row n of A070165. This sequence is the record transform of the sequence m/n for n >= 1. - _Michael De Vlieger_, Mar 13 2018 %H A025587 Howard A. Landman, <a href="/A025587/b025587.txt">Table of n, a(n) for n = 0..33</a> (a(0)-a(23) from _David W. Wilson_, a(24)-a(26) from Larry Reeves, a(27) from _Jud McCranie_) %H A025587 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %t A025587 With[{s = Array[Max@ NestWhileList[If[EvenQ@#, #/2, 3 # + 1] &, #, # > 1 &]/# &, 2^18]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* _Michael De Vlieger_, Mar 13 2018 *) %o A025587 (C) %o A025587 // First column is this sequence. %o A025587 // Second column is the maximum (even) N reached. %o A025587 // Third column is A061523, the ratio of those. %o A025587 // NOTE: This could be made faster by special-casing 1, %o A025587 // starting at 3, and incrementing by 4, since all terms except 1 %o A025587 // are congruent to 3 (mod 4). %o A025587 #include <stdio.h> %o A025587 long long i=1, n, max_n; %o A025587 long double max_ratio=1.0, ratio; %o A025587 int main() %o A025587 { %o A025587 while(1) %o A025587 { %o A025587 n = i; %o A025587 max_n = n; %o A025587 while (n > i) // Can stop as soon as we drop below start. %o A025587 { %o A025587 n = 3*n + 1; %o A025587 max_n = (n > max_n) ? n : max_n; %o A025587 while (!(n&1)) %o A025587 { %o A025587 n >>= 1; %o A025587 } %o A025587 } %o A025587 ratio = (double) max_n / (double) i; %o A025587 if (ratio > max_ratio) %o A025587 { %o A025587 max_ratio = ratio; %o A025587 printf("%lld\t%lld\t%Lf\n", i, max_n, max_ratio); %o A025587 } %o A025587 i += 2; %o A025587 } %o A025587 } %o A025587 // _Howard A. Landman_, Nov 14 2017 %Y A025587 Cf. A295163 for maximum odd number reached, and A061523 for blowup factors. %Y A025587 Cf. A006884, A070165. %K A025587 nonn,nice %O A025587 0,2 %A A025587 _David W. Wilson_ %E A025587 More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001 %E A025587 a(27) from _Jud McCranie_, Apr 23 2012 %E A025587 a(26) corrected (was missing least significant digit) by _Howard A. Landman_, Nov 14 2017