This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025757 #27 Aug 04 2024 12:43:50 %S A025757 1,1,7,69,783,9597,123495,1643397,22413183,311466829,4392857431, %T A025757 62702224213,903886452975,13138698859677,192337495360071, %U A025757 2832859169364261,41946319269028191,624009420903043821 %N A025757 4th-order Vatalan numbers (generalization of Catalan numbers). %H A025757 Vincenzo Librandi, <a href="/A025757/b025757.txt">Table of n, a(n) for n = 0..200</a> %H A025757 W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4. %H A025757 T. M. Richardson, <a href="http://arxiv.org/abs/1410.5880">The Super Patalan Numbers</a>, arXiv preprint arXiv:1410.5880, 2014 %H A025757 T. M. Richardson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Richardson/rich2.html">The Super Patalan Numbers</a>, J. Int. Seq. 18 (2015) # 15.3.3. %F A025757 G.f.: 4 / (3+(1-16*x)^(1/4)). %F A025757 a(n) = Sum_{m=1..n-1} (m/n*4^(n-m)) * Sum_{k=1..n-m} binomial(n+k-1,n-1) * Sum_{j=0..k} binomial(j,n-m-3*k+2*j) * 4^(j-k) * binomial(k,j) * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j) + 1. - _Vladimir Kruchinin_, Feb 08 2011 %F A025757 Conjecture: 5*n*(n-1)*(n-2)*a(n) -(239*n-600)*(n-1)*(n-2)*a(n-1) +24*(n-2)*(158*n^2-953*n+1445)*a(n-2) +16*(-1232*n^3+13056*n^2-45949*n+53730)*a(n-3) -128*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - _R. J. Mathar_, Jul 28 2014 %F A025757 a(n) = (-1)^(n+1) * 4^(2*n+1) * Sum_{k>=0} (-1/3)^(k+1) * binomial(k/4,n). - _Seiichi Manyama_, Aug 04 2024 %t A025757 Table[SeriesCoefficient[4/(3 + (1 - 16*x)^(1/4)), {x, 0, n}], {n, 0, 20}] (* _Vincenzo Librandi_, Dec 29 2012 *) %Y A025757 a(n), n >= 1, = row sums of triangle A049213. %Y A025757 Cf. A000108, A025756, A025758, A025759, A025760, A025761, A025762, A025763. %K A025757 nonn %O A025757 0,3 %A A025757 _Olivier Gérard_