cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025771 Expansion of 1/((1-x)*(1-x^3)*(1-x^11)).

This page as a plain text file.
%I A025771 #27 Aug 20 2025 10:56:52
%S A025771 1,1,1,2,2,2,3,3,3,4,4,5,6,6,7,8,8,9,10,10,11,12,13,14,15,16,17,18,19,
%T A025771 20,21,22,23,25,26,27,29,30,31,33,34,35,37,38,40,42,43,45,47,48,50,52,
%U A025771 53,55,57,59,61,63,65,67,69,71,73,75,77,79,82,84,86,89
%N A025771 Expansion of 1/((1-x)*(1-x^3)*(1-x^11)).
%C A025771 a(n) is the number of partitions of n into parts 1, 3, and 11. - _Joerg Arndt_, Aug 20 2025
%H A025771 Paolo Xausa, <a href="/A025771/b025771.txt">Table of n, a(n) for n = 0..10000</a>
%H A025771 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1,0,0,0,0,0,0,1,-1,0,-1,1).
%F A025771 a(n) = +a(n-1) +a(n-3) -a(n-4) +a(n-11) -a(n-12) -a(n-14) +a(n-15). - _R. J. Mathar_, Aug 21 2014
%F A025771 a(n) = floor((n^2 + 15*n + 78)/66). - _Hoang Xuan Thanh_, Aug 18 2025
%p A025771 A025771 := proc(n)
%p A025771         round(n^2/66 +5*n/22 +68/99 + A099837(n+3)/9) ;
%p A025771 end proc: # _R. J. Mathar_, Aug 11 2012
%t A025771 A025771[n_] := Quotient[n*(n + 15) + 78, 66];
%t A025771 Array[A025771, 100, 0] (* _Paolo Xausa_, Aug 20 2025 *)
%o A025771 (PARI) Vec(1/((1-x)*(1-x^3)*(1-x^11))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012
%K A025771 nonn,easy
%O A025771 0,4
%A A025771 _N. J. A. Sloane_