cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025796 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^6)).

This page as a plain text file.
%I A025796 #32 Aug 26 2025 09:50:42
%S A025796 1,0,1,1,1,1,3,1,3,3,3,3,6,3,6,6,6,6,10,6,10,10,10,10,15,10,15,15,15,
%T A025796 15,21,15,21,21,21,21,28,21,28,28,28,28,36,28,36,36,36,36,45,36,45,45,
%U A025796 45,45,55,45,55,55,55,55,66
%N A025796 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^6)).
%C A025796 Number of partitions of n into parts 2, 3, and 6. - _Hoang Xuan Thanh_, Aug 21 2025
%H A025796 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1,1,0,-1,-1,0,1).
%F A025796 a(6n) = a(6n+2) = a(6n+3) = a(6n+4) = a(6n+5) = n*(n+1)/2. a(6n+1) = (n-1)*n/2. - _Franklin T. Adams-Watters_, Oct 27 2014
%F A025796 a(n) = binomial(floor(((floor(n/2) - (n mod 2))/3)) + 2, 2). - _Hoang Xuan Thanh_, Aug 25 2025
%o A025796 (PARI) a(n)=(n^2+(4*((n+2)%3)+7+3*(-1)^n)*n+57+33*(-1)^n/2)\72 \\ _Tani Akinari_, Oct 27 2014
%o A025796 (PARI) a(n) = binomial((n\2-n%2)\3+2, 2) \\ _Hoang Xuan Thanh_, Aug 21 2025
%Y A025796 Cf. A024163.
%K A025796 nonn,easy,changed
%O A025796 0,7
%A A025796 _N. J. A. Sloane_