This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025799 #31 Aug 25 2025 11:34:12 %S A025799 1,0,1,1,1,1,2,1,2,2,3,2,4,3,4,4,5,4,6,5,7,6,8,7,9,8,10,9,11,10,13,11, %T A025799 14,13,15,14,17,15,18,17,20,18,22,20,23,22,25,23,27,25,29,27,31,29,33, %U A025799 31,35,33,37,35,40,37,42,40,44,42,47,44,49,47,52,49,55,52,57,55,60,57 %N A025799 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^10)). %C A025799 Number of partitions of n into parts 2, 3, and 10. - _Hoang Xuan Thanh_, Aug 21 2025 %H A025799 Paolo Xausa, <a href="/A025799/b025799.txt">Table of n, a(n) for n = 0..10000</a> %H A025799 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1,0,0,0,0,1,0,-1,-1,0,1). %F A025799 G.f.: 1/((1-x^2)(1-x^3)(1-x^10)). %F A025799 a(n) = A008672( A028242(n - 2)). a(2*n + 3) = a(2*n) = A008672(n).- _Michael Somos_, Mar 2003 %F A025799 a(n) = a(-15 - n) for all n in Z. - _Michael Somos_, Nov 16 2005 %F A025799 a(n) = floor((n^2 + 15*n + 3*(n+7)*(-1)^n + 99)/120). - _Hoang Xuan Thanh_, Aug 21 2025 %e A025799 G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 2*x^11 + ... %t A025799 A025799[n_] := Floor[(n^2 + 15*n + 3*(-1)^n*(n + 7) + 99)/120]; %t A025799 Array[A025799, 100, 0] (* _Paolo Xausa_, Aug 25 2025 *) %o A025799 (PARI) {a(n) = if( n<-14, a(-15 - n), polcoeff( 1 / ((1 - x^2) * (1 - x^3) * (1 - x^10)) + x * O(x^n), n))}; /* _Michael Somos_, Mar 2003 */ %o A025799 (PARI) {a(n) = n = (n - 3*(n%2)) / 2; (n^2 + 9*n)\30 + 1}; /* _Michael Somos_, Nov 16 2005 */ %Y A025799 Cf. A008672, A028242. %K A025799 nonn,easy,changed %O A025799 0,7 %A A025799 _N. J. A. Sloane_