This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A025828 #34 Sep 01 2025 11:21:14 %S A025828 1,0,0,1,1,0,2,1,1,2,2,1,4,2,2,4,4,2,6,4,4,6,6,4,9,6,6,9,9,6,12,9,9, %T A025828 12,12,9,16,12,12,16,16,12,20,16,16,20,20,16,25,20,20,25,25,20,30,25, %U A025828 25,30,30,25,36,30,30,36,36,30,42,36,36,42,42 %N A025828 Expansion of 1/((1-x^3)*(1-x^4)*(1-x^6)). %C A025828 Number of partitions of n into parts 3, 4, and 6. - _Joerg Arndt_, Aug 25 2013 %H A025828 Kevin Woods, <a href="https://arxiv.org/abs/2011.00600">The generalized Frobenius problem via restricted partition functions</a>, arXiv:2011.00600 [math.CO], 2021. See Example 1.4 p. 2. %H A025828 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,0,1,-1,0,-1,-1,0,0,1). %F A025828 From _Hoang Xuan Thanh_, Aug 31 2025: (Start) %F A025828 a(n) = floor(( n^2 + n*(21 + 3*(-1)^n - 8*(n mod 3)) )/144 + 1 - (n mod 6)/12). %F A025828 a(n) = (floor((n+3)/3) - floor((n+1)/4)) * (floor((n+3)/3) + floor((n+1)/4) -floor((n+1)/2)). (End) %t A025828 CoefficientList[Series[1/((1-x^3)(1-x^4)(1-x^6)),{x,0,90}],x] (* _Harvey P. Dale_, Jul 10 2019 *) %o A025828 (PARI) a(n) = (48*(1-n%3)*(n\3+1)+2*n^2+26*n+213+3*(2*n+13)*(-1)^n)\288; \\ _Tani Akinari_, Aug 25 2013 %o A025828 (PARI) Vec(1/((1-x^3)*(1-x^4)*(1-x^6))+ O(x^80)) \\ _Michel Marcus_, Nov 04 2014 %o A025828 (PARI) a(n) = (n^2 + n*(21 + 3*(-1)^n - 8*(n%3)) + 144 - 12*(n%6))\144; \\ _Hoang Xuan Thanh_, Aug 31 2025 %K A025828 nonn,easy,changed %O A025828 0,7 %A A025828 _N. J. A. Sloane_ %E A025828 More terms from _Michel Marcus_, Nov 04 2014