cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026011 Expansion of Product_{m>=1} (1 + q^m)^(2*m).

This page as a plain text file.
%I A026011 #28 May 30 2018 13:56:43
%S A026011 1,2,5,14,30,68,145,298,600,1182,2280,4318,8064,14824,26917,48292,
%T A026011 85675,150466,261762,451328,771739,1309362,2205109,3687904,6127155,
%U A026011 10116074,16602508,27093582,43974355,71003224
%N A026011 Expansion of Product_{m>=1} (1 + q^m)^(2*m).
%H A026011 Seiichi Manyama, <a href="/A026011/b026011.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)
%H A026011 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
%F A026011 a(n) ~ Zeta(3)^(1/6) * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3)/2) / (2^(2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - _Vaclav Kotesovec_, Aug 17 2015
%F A026011 G.f.: exp(2*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)). - _Ilya Gutkovskiy_, May 30 2018
%t A026011 nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 17 2015 *)
%Y A026011 Column k=2 of A277938.
%Y A026011 Cf. A026007, A027346, A027906.
%K A026011 nonn
%O A026011 0,2
%A A026011 _N. J. A. Sloane_