A026023 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 3. Also a(n) = Sum{T(n,k), k = 0,1,...,[ (n+3)/2 ]}, where T is defined in A026022.
1, 2, 4, 8, 15, 30, 56, 112, 210, 420, 792, 1584, 3003, 6006, 11440, 22880, 43758, 87516, 167960, 335920, 646646, 1293292, 2496144, 4992288, 9657700, 19315400, 37442160, 74884320, 145422675, 290845350, 565722720, 1131445440, 2203961430, 4407922860
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Christian Krattenthaler, Daniel Yaqubi, Some determinants of path generating functions, II, arXiv:1802.05990 [math.CO], 2018, Adv. Appl. Math. 101 (2018), 232-265.
Programs
-
Mathematica
Module[{r=Range[0,20],b},Riffle[b=Binomial[2r+2,r],2b]] (* Paolo Xausa, Dec 14 2023 *)
Formula
a(2n) = C(2n+2, n), a(2n+1) = 2*a(2n).
E.g.f.: dif(Bessel_I(1,2x)+2*Bessel_I(2,2x)+Bessel_I(3,2x),x). - Paul Barry, Jun 09 2007
O.g.f.: -1/2*(-1+4*x^2+(1-8*x^2+20*x^4-16*x^6)^(1/2))/x^4/(2*x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
Conjecture: (n+4)*(n-1)*a(n) +(n-1)*(n+1)*a(n-1) -2*(n+1)*(2*n+1)*a(n-2) -4*(n-1)*(n+1)*a(n-3)=0. - R. J. Mathar, Sep 29 2012
Extensions
Definition corrected by Herbert Kociemba, May 08 2004
Comments