cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026023 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 3. Also a(n) = Sum{T(n,k), k = 0,1,...,[ (n+3)/2 ]}, where T is defined in A026022.

Original entry on oeis.org

1, 2, 4, 8, 15, 30, 56, 112, 210, 420, 792, 1584, 3003, 6006, 11440, 22880, 43758, 87516, 167960, 335920, 646646, 1293292, 2496144, 4992288, 9657700, 19315400, 37442160, 74884320, 145422675, 290845350, 565722720, 1131445440, 2203961430, 4407922860
Offset: 0

Views

Author

Keywords

Comments

a(n)/2^n is the probability that a random walker starting at x=4 and jumping +-1 with equal probability at each time step is not adsorbed at the boundary x=0 at time n. - Robert M. Ziff, Nov 10 2014

Crossrefs

Cf. A001791, A162551 (bisections).

Programs

  • Mathematica
    Module[{r=Range[0,20],b},Riffle[b=Binomial[2r+2,r],2b]] (* Paolo Xausa, Dec 14 2023 *)

Formula

a(2n) = C(2n+2, n), a(2n+1) = 2*a(2n).
E.g.f.: dif(Bessel_I(1,2x)+2*Bessel_I(2,2x)+Bessel_I(3,2x),x). - Paul Barry, Jun 09 2007
O.g.f.: -1/2*(-1+4*x^2+(1-8*x^2+20*x^4-16*x^6)^(1/2))/x^4/(2*x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
Conjecture: (n+4)*(n-1)*a(n) +(n-1)*(n+1)*a(n-1) -2*(n+1)*(2*n+1)*a(n-2) -4*(n-1)*(n+1)*a(n-3)=0. - R. J. Mathar, Sep 29 2012

Extensions

Definition corrected by Herbert Kociemba, May 08 2004