This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A026054 #30 Sep 08 2022 08:44:49 %S A026054 13,28,50,80,119,168,228,300,385,484,598,728,875,1040,1224,1428,1653, %T A026054 1900,2170,2464,2783,3128,3500,3900,4329,4788,5278,5800,6355,6944, %U A026054 7568,8228,8925,9660,10434,11248,12103,13000,13940,14924,15953,17028,18150,19320,20539,21808,23128,24500,25925 %N A026054 dot product (n,n-1,...2,1).(3,4,...,n,1,2). %H A026054 Vincenzo Librandi, <a href="/A026054/b026054.txt">Table of n, a(n) for n = 3..1000</a> %H A026054 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A026054 a(n) = A023551(n+1) + 4. %F A026054 From _Colin Barker_, Sep 17 2012: (Start) %F A026054 a(n) = n*(n^2+9*n-10)/6. %F A026054 G.f.: x^3*(13 - 24*x + 16*x^2 - 4*x^3)/(1-x)^4. (End) %F A026054 E.g.f.: x^2*(-12 + (12+x)*exp(x))/6. - _G. C. Greubel_, Oct 30 2019 %p A026054 seq(n*(n^2+9*n-10)/6, n=3..60); # _G. C. Greubel_, Oct 30 2019 %t A026054 Table[Range[n,1,-1].RotateLeft[Range[n],2],{n,3,60}] (* or *) LinearRecurrence[ {4,-6,4,-1},{13,28,50,80},60] (* _Harvey P. Dale_, Oct 14 2012 *) %t A026054 Drop[CoefficientList[Series[x(13 -24x +16x^2 -4x^3)/(1-x)^4, {x, 0, 60}], x], 1] (* _Vincenzo Librandi_, Oct 17 2013 *) %o A026054 (Magma) [n*(n^2+9*n-10)/6: n in [3..60]]; // _Vincenzo Librandi_, Oct 17 2013 %o A026054 (PARI) vector(60, n, (n+2)*((n+2)^2+9*(n+2)-10)/6) \\ _G. C. Greubel_, Oct 30 2019 %o A026054 (Magma) [n*(n^2+9*n-10)/6: n in [0..60]]; // _G. C. Greubel_, Oct 30 2019 %o A026054 (Sage) [n*(n^2+9*n-10)/6 for n in (0..60)] # _G. C. Greubel_, Oct 30 2019 %o A026054 (GAP) List([0..60], n-> n*(n^2+9*n-10)/6); # _G. C. Greubel_, Oct 30 2019 %Y A026054 Cf. A023551. %Y A026054 Column 2 of triangle A094415. %Y A026054 Essentially the same as A060488. - _Vladeta Jovovic_, Jun 15 2006 %K A026054 nonn,easy %O A026054 3,1 %A A026054 _Clark Kimberling_ %E A026054 Closed-form formula corrected by _Colin Barker_, Sep 17 2012