cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026082 Irregular triangular array T read by rows: T(n,k) = C(n,k) for k=0..n for n = 0,1,2,3. For n >= 4, T(n,0) = T(n,2n)=1, T(n,1) = T(n,2n-1) = n - 3, T(4,2) = 4, T(4,3) = 3, T(4,4) = 6; T(4,5) = 3, T(4,6)=4; for n >= 5, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k=2..2n-2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 4, 3, 6, 3, 4, 1, 1, 1, 2, 6, 8, 13, 12, 13, 8, 6, 2, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 4, 13, 28, 52, 76, 98, 104, 98, 76, 52, 28, 13, 4, 1, 1, 5, 18, 45, 93, 156, 226, 278, 300, 278, 226, 156, 93, 45, 18, 5, 1, 1, 6, 24, 68, 156, 294, 475, 660, 804
Offset: 1

Views

Author

Keywords

Comments

For n >= 4, T(n,k) = number of strings s(0)..s(n) such that s(n) = n - k, s(0) = 0, |s(i)-s(i-1)| = 1 for i=1,2,3 and |s(i)-s(i-1)| <= 1 for i >= 4.

Examples

			First 6 rows:
  1
  1  1
  1  2  1
  1  3  3  1
  1  1  4  3  6  3  4  1  1
  1  2  6  8 12 12 13  8  6  2  1
		

Crossrefs

First differences of A024996.

Programs

  • Maple
    A026082 := proc(n,k)
        option remember;
        if n < 0 or k < 0 or k > 2*n then
            0 ;
        elif n <= 3 then
            binomial(n,k) ;
        elif n = 4 then
            op(k+1,[1,1,4,3,6,3,4,1,1]) ;
        elif k =0 or k=2*n then
            1 ;
        else
            procname(n-1,k-2)+procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Jun 23 2013
  • Mathematica
    z = 15; t[n_, 0] := 1 /; n >= 4; t[n_, 1] := n - 3 /; n >= 4;
    t[4, 2] = 4; t[4, 3] = 3; t[4, 4] = 6; t[4, 5] = 3; t[4, 6] = 4;
    t[n_, k_] := t[n, k] = Which[0 <= k <= n && 0 <= n <= 3, Binomial[n, k], n
    >= 4 && k == 2 n, 1, k == 2 n - 1, n - 3, 2 <= k <= 2 n - 2, t[n - 1, k -
    2] + t[n - 1, k - 1] + t[n - 1, k]]; s = Table[Binomial[n, k], {n, 0, 3},
    {k, 0, n}]; u = Join[s, Table[t[n, k], {n, 4, z}, {k, 0, 2 n}]];
    TableForm[u] (* A026082 array *)
    Flatten[u]   (* A026082 sequence *)

Formula

G.f.: (1-y*z)^3 / (1-z*(1+y+y^2)).

Extensions

Updated by Clark Kimberling, Aug 28 2014