A026082 Irregular triangular array T read by rows: T(n,k) = C(n,k) for k=0..n for n = 0,1,2,3. For n >= 4, T(n,0) = T(n,2n)=1, T(n,1) = T(n,2n-1) = n - 3, T(4,2) = 4, T(4,3) = 3, T(4,4) = 6; T(4,5) = 3, T(4,6)=4; for n >= 5, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k=2..2n-2.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 4, 3, 6, 3, 4, 1, 1, 1, 2, 6, 8, 13, 12, 13, 8, 6, 2, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 4, 13, 28, 52, 76, 98, 104, 98, 76, 52, 28, 13, 4, 1, 1, 5, 18, 45, 93, 156, 226, 278, 300, 278, 226, 156, 93, 45, 18, 5, 1, 1, 6, 24, 68, 156, 294, 475, 660, 804
Offset: 1
Examples
First 6 rows: 1 1 1 1 2 1 1 3 3 1 1 1 4 3 6 3 4 1 1 1 2 6 8 12 12 13 8 6 2 1
Links
Crossrefs
First differences of A024996.
Programs
-
Maple
A026082 := proc(n,k) option remember; if n < 0 or k < 0 or k > 2*n then 0 ; elif n <= 3 then binomial(n,k) ; elif n = 4 then op(k+1,[1,1,4,3,6,3,4,1,1]) ; elif k =0 or k=2*n then 1 ; else procname(n-1,k-2)+procname(n-1,k-1)+procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jun 23 2013
-
Mathematica
z = 15; t[n_, 0] := 1 /; n >= 4; t[n_, 1] := n - 3 /; n >= 4; t[4, 2] = 4; t[4, 3] = 3; t[4, 4] = 6; t[4, 5] = 3; t[4, 6] = 4; t[n_, k_] := t[n, k] = Which[0 <= k <= n && 0 <= n <= 3, Binomial[n, k], n >= 4 && k == 2 n, 1, k == 2 n - 1, n - 3, 2 <= k <= 2 n - 2, t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k]]; s = Table[Binomial[n, k], {n, 0, 3}, {k, 0, n}]; u = Join[s, Table[t[n, k], {n, 4, z}, {k, 0, 2 n}]]; TableForm[u] (* A026082 array *) Flatten[u] (* A026082 sequence *)
Formula
G.f.: (1-y*z)^3 / (1-z*(1+y+y^2)).
Extensions
Updated by Clark Kimberling, Aug 28 2014
Comments